The 14th Case VHS And K3 Fibrations III: Elliptic Surfaces

Alan Thompson
(joint work with A. Clingher, C. F. Doran, J. Lewis and A. Y. Novoseltsev)

9th December 2012, CMS Winter Meeting, Montreal.

This talk is the third in a series of three given by Charles Doran, Andrey Novoseltsev and myself at the CMS Winter Meeting 2012. It is based upon the material in Section 7 of the preprint $\left[\mathrm{CDL}^{+}\right]$.

In the previous talks, we saw an explicit construction of a family of threefolds that realises a variation of Hodge structure that was conjectured to exist in [DM06]. In this talk we will see a second method for constructing this family, using elliptic surfaces.

We begin by recalling the basic setup. W is a Calabi-Yau threefold with a single node that admits a fibration $W \rightarrow \mathbb{P}^{1}$ by Kummer surfaces $\operatorname{Kum}\left(E_{1} \times\right.$ E_{2}). This W is a general member of the family of Calabi-Yau threefolds that realise the fourteenth case variation of Hodge structure from [DM06] mentioned above. Our aim is to find a direct method by which W can be constructed.

The proof of [CD11, Theorem 3.13] shows that there is a canonical choice of sixteen (-2)-curves in a general fibre of $W \rightarrow \mathbb{P}^{1}$, which must therefore sweep out a number of divisors on W. Take a double cover of W ramified over these divisors and contract the (-1)-curves that result. This undoes the Kummer construction, giving a new threefold \mathcal{A} that is fibred over \mathbb{P}^{1} by products of elliptic curves $E_{1} \times E_{2}$. Furthermore, we have an expression for the j-invariants of E_{1} and E_{2}, they are given by the roots of the quadratic equation

$$
j^{2}-j+\frac{u v}{(u+v)^{2} 12^{6} \xi_{0}}=0
$$

where (u, v) are coordinates on the base $\mathbb{P}_{u, v}^{1}$ and ξ_{0} is a modular parameter. For now, we assume that W is generic so that $\xi_{0} \neq 0, \frac{1}{12^{6}}, \infty$, note that degenerate behaviour occurs at those values of ξ_{0}.

We would like to construct a birational model for \mathcal{A}. Ideally, as the general fibre of $\mathcal{A} \rightarrow \mathbb{P}_{u, v}^{1}$ is a product of elliptic curves, we would like to
construct such a model as a product of elliptic surfaces. Unfortunately, however, the equation for the j-invariant above shows that monodromy around one of the two points in $\mathbb{P}_{u, v}^{1}$

$$
(u, v)=\left(2-12^{6} \xi_{0} \pm 2 \sqrt{1-12^{6} \xi_{0}}, 12^{6} \xi_{0}\right)
$$

switches E_{1} and E_{2}, so such a splitting is not possible.
To solve this, let $\bar{f}: \mathbb{P}_{r}^{1} \rightarrow \mathbb{P}_{u, v}^{1}$ be the double cover of $\mathbb{P}_{u, v}^{1}$ ramified over the two points above (here \mathbb{P}_{r}^{1} is equipped with affine coordinate r). Then \mathbb{P}_{r}^{1} also admits a double cover $\bar{g}: \mathbb{P}_{r}^{1} \rightarrow \mathbb{P}_{j}^{1}$ of the j-line \mathbb{P}_{j}^{1}, ramified over the two points

$$
j=\frac{1}{2} \pm \frac{1}{2} \sqrt{1-\frac{1}{12^{6} \xi_{0}}} .
$$

We have a diagram

Let \mathcal{A}^{\prime} denote the threefold obtained by pulling back $\mathcal{A} \rightarrow \mathbb{P}_{u, v}^{1}$ by the morphism f^{\prime}. Then we have:

Proposition 1. $\mathcal{A}^{\prime} \rightarrow \mathbb{P}_{r}^{1}$ is birational over \mathbb{P}_{r}^{1} to a fibre product $\mathcal{E}_{1} \times_{\mathbb{P}_{r}} \mathcal{E}_{2}$ of elliptic surfaces $\mathcal{E}_{1,2} \rightarrow \mathbb{P}_{r}^{1}$ with section. Furthermore, the j-invariants of the elliptic curves E_{1} and E_{2} forming the fibres of \mathcal{E}_{1} and \mathcal{E}_{2} over a point $r \in \mathbb{P}_{r}^{1}$ are given by

$$
\begin{aligned}
j_{1} & =\bar{g}(r), \\
j_{2} & =1-j_{1} .
\end{aligned}
$$

Thus, in order to construct a birational model for \mathcal{A}^{\prime}, and hence W, it is enough to construct the elliptic surfaces \mathcal{E}_{1} and \mathcal{E}_{2}. Our job is made even easier by the following lemma:

Lemma 2. Let $i: \mathbb{P}_{r}^{1} \rightarrow \mathbb{P}_{r}^{1}$ be the involution that switches the preimages of a point $(u, v) \in \mathbb{P}_{u, v}^{1}$ under \bar{f}. Then i induces an isomorphism $\mathcal{E}_{1} \rightarrow \mathcal{E}_{2}$.

From this, we see that it is sufficient to construct just the elliptic surface \mathcal{E}_{1}. Furthermore, as we know the j-invariant map for \mathcal{E}_{1}, we already have \mathcal{E}_{1} up to quadratic twists. To completely determine \mathcal{E}_{1} we just need to determine the type and location of its singular fibres.

At this point, a canonical bundle calculation shows that $\omega_{\mathcal{E}_{1}} \cong \mathcal{O}_{\mathcal{E}_{1}}(-E)$, where E denotes the class of a fibre in \mathcal{E}_{1}. This gives us that the Euler number of \mathcal{E}_{1} is 12 . As \mathcal{E}_{1} has six singular fibres, the only possible combination of singular fibres on \mathcal{E}_{1} that can lead to this Euler number is two each of types $I_{1}, I I$ and $I I I$ occurring at the points over $j=\infty, 0$ and 1 respectively.

This completes the construction of \mathcal{E}_{1}. We can obtain a birational model for W by first constructing $\mathcal{E}_{1} \times \mathbb{P}_{r}^{1} \mathcal{E}_{2}$, then quotienting by the involution induced by $i: \mathbb{P}_{r}^{1} \rightarrow \mathbb{P}_{r}^{1}$ to obtain a birational model for \mathcal{A}, then performing the fibrewise Kummer construction.

We conclude with a brief discussion of the degenerate case $\xi_{0}=\frac{1}{12^{6}}$. In this case the equation for the j-invariants splits as a product of linear factors

$$
\begin{aligned}
j_{1} & =\frac{u}{u+v}, \\
j_{2} & =\frac{v}{u+v} .
\end{aligned}
$$

Now it is possible to see that the threefold \mathcal{A} is birational over $\mathbb{P}_{u, v}^{1}$ to a fibre product of elliptic surfaces $\mathcal{E}_{1,2} \rightarrow \mathbb{P}_{u, v}^{1}$. Furthermore, these elliptic surfaces are isomorphic, with isomorphism induced by the involution $(u, v) \mapsto(v, u)$ on $\mathbb{P}_{u, v}^{1}$. Thus it is again enough to just consider \mathcal{E}_{1}.

In this setting, we still find that $\omega_{\mathcal{E}_{1}} \cong \mathcal{O}_{\mathcal{E}_{1}}(-E)$, where E denotes the class of a fibre in \mathcal{E}_{1}. This again gives us that the Euler number of \mathcal{E}_{1} is 12 . However, this time we only have three points where $j=0,1$, or ∞. In fact, it turns out that in this case \mathcal{E}_{1} has four singular fibres of types $I_{1}, I I, I I I$ and I_{0}^{*} at $(u, v)=(-1,1),(0,1),(1,0)$ and $(1,1)$ respectively.

Using this we can construct \mathcal{E}_{1} and, performing the Kummer construction, thus obtain a birational model for W when $\xi_{0}=\frac{1}{12^{6}}$.

References

[CD11] A. Clingher and C. F. Doran, Note on a geometric isogeny of K3 surfaces, Int. Math. Res. Not. 2011 (2011), no. 16, 3657-3687.
$\left[\mathrm{CDL}^{+}\right]$A. Clingher, C. F. Doran, J. Lewis, A. Y. Novoseltsev, and A. Thompson, The 14 th case VHS via K3 fibrations, Manuscript in preparation, preprint available December 2012.
[DM06] C. F. Doran and J. W. Morgan, Mirror symmetry and integral variations of Hodge structure underlying one-parameter families of Calabi-Yau threefolds, Mirror Symmetry. V, AMS/IP Stud. Adv. Math., vol. 38, Amer. Math. Soc., Providence, RI, 2006, pp. 517537.

