ANTICAN Alan Th Univ

Setup

We study anticanonical pairs with involution. These are triples (X, D, ι) , where

- X is a normal rational surface,
- D is an effective reduced divisor on X with $K_X + D \sim 0$,
- $\iota: X \to X$ is an involution such that $\iota(D) = D$,

under the assumptions that

- (a) (positivity) the ramification divisor R of ι is Cartier and ample, and
- (b) (singularity) the pair $(X, D + \epsilon R)$ has log canonical singularities for $0 < \epsilon \ll 1$.

For simplicity of presentation, we also assume

(c) (Type III) if $f: \widetilde{X} \to X$ is a minimal resolution of the singularities of X and \widetilde{D} is the divisor on \widetilde{X} defined by $K_{\widetilde{X}} + \widetilde{D} \sim f^*(K_X + D) \sim 0$, then \widetilde{D} is a cycle of \mathbb{P}^1 's.

Let $\pi: X \to X/\iota := Y$ be the quotient, set $C = \pi(D)$ to be the boundary on Y, and $B = \pi(R)$ to be the branch divisor. Then study of (X, D, ι) is equivalent to study of (Y, C, B).

Toric Examples

A polytope P with integral vertices corresponds to a polarised toric variety (Y, L_P) , with L_P an ample line bundle. In the panel to the right, we list polytopes P giving rise to toric examples of triples (Y, C, B) as above; in each case we list the vertices of P and draw a representative example. The divisor C is part of the toric boundary and has two torusinvariant components, corresponding to the two blue sides passing through the blue vertex v = (2, 2), and $\mathcal{O}_Y(B) \cong L_P$. Finally, we label each case by a Dynkin diagram, shown in red.

ANTICANONICAL PAIRS WITH INVOLUTION

Alan Thompson (joint work with Valery Alexeev) University of Warwick / University of Cambridge

Main Result

Theorem. Every Type III anticanonical pair with involution (X, D, ι) is either

• (pure type) a double cover of one of the toric examples (Y, B, C) from the panel on the left, or

• (primed type) a blow-up of a pure type at one or more of the points $D \cap R$.

Moreover, the moduli space of pure type anticanonical pairs with involution may be identified with the quotient $\operatorname{Hom}(\Lambda, \mathbb{C}^*)/W_{\Lambda}$, where Λ is the root lattice associated to the corresponding Dynkin diagram and W_{Λ} is its Weyl

Moduli and Losev-Manin Spaces

The space $\operatorname{Hom}(\Lambda, \mathbb{C}^*)$ admits a natural compactification to a toric variety $X(\Lambda)$ and the action of W_{Λ} extends. Moreover, the boundary points in $X(\Lambda)/W_{\Lambda}$ provide moduli for degenerate anticanonical pairs with involution in a natural

In 2000, Losev and Manin showed that $X(A_n)$ may be realised as a compact moduli space for stable (n + 1)-pointed chains of \mathbb{P}^1 's. One may show that there is a natural correspondence between anticanonical pairs with involution that have Dynkin diagram A_n and configurations of (n+1) points in \mathbb{P}^1 . This correspondence identifies the moduli space of A_n type anticanonical pairs with involution with a Losev-Manin moduli space.

One may therefore think of the moduli spaces of D_n - and E_n type anticanonical pairs with involution as generalisations of Losev-Manin spaces to other simply-laced Dynkin diagrams.