Anticanonical Pairs with Involution

Alan Thompson (joint work with Valery Alexeev)

University of Warwick / University of Cambridge

Setup

We study anticanonical pairs with involution. These are triples (X, D, ι), where

- X is a normal rational surface,
- D is an effective reduced divisor on X with $K_{X}+D \sim 0$,
- $\iota: X \rightarrow X$ is an involution such that $\iota(D)=D$,
under the assumptions that
(a) (positivity) the ramification divisor R of ι is Cartier and ample, and
(b) (singularity) the pair $(X, D+\epsilon R)$ has \log canonical singularities for $0<\epsilon \ll 1$.

For simplicity of presentation, we also assume
(c) (Type III) if $f: \widetilde{X} \rightarrow X$ is a minimal resolution of the singularities of X and \widetilde{D} is the divisor on \widetilde{X} defined by $K_{\widetilde{X}}+\widetilde{D} \sim f^{*}\left(K_{X}+D\right) \sim 0$, then \widetilde{D} is a cycle of \mathbb{P}^{1} 's.
Let $\pi: X \rightarrow X / \iota:=Y$ be the quotient, set $C=\pi(D)$ to be the boundary on Y, and $B=\pi(R)$ to be the branch divisor. Then study of (X, D, ι) is equivalent to study of (Y, C, B)

Toric Examples

A polytope P with integral vertices corresponds to a polarised toric variety $\left(Y, L_{P}\right)$, with L_{P} an ample line bundle. In the panel to the right, we list polytopes P giving rise to toric examples of triples (Y, C, B) as above; in each case we list the vertices of P and draw a representative example. The divisor C is part of the toric boundary and has two torusinvariant components, corresponding to the two blue sides passing through the blue vertex $v=(2,2)$, and $\mathcal{O}_{Y}(B) \cong L_{P}$. Finally, we label each case by a Dynkin diagram, shown in red.

Toric Polytopes

> (1) $A_{2 n-1}:(2,2),(0,0),(2 n, 0)$
> (2) $A_{2 n-2}^{-}:(2,2),(0,0),(2 n-1,0)$.
> (3) $A_{2 n-3}^{--}:(2,2),(1,0),(2 n-1,0)$.

A_{2}^{-}

(4) $D_{2 n}:(2,2),(0,2),(0,0),(2 n-2,0)$.
(5) $D_{2 n-1}^{-}:(2,2),(0,2),(0,0),(2 n-3,0)$.
(6) $E_{6}^{--}:(2,2),(0,3),(0,0),(3,0)$

(7) $E_{7}^{-}:(2,2),(0,3),(0,0),(4,0)$
(8) $E_{8}^{--}:(2,2),(0,3),(0,0),(5,0)$

E_{7}^{-}

Main Result

Theorem. Every Type III anticanonical pair with involution (X, D, ι) is either

- (pure type) a double cover of one of the toric examples (Y, B, C) from the panel on the left, or
- (primed type) a blow-up of a pure type at one or more of the points $D \cap R$.

Moreover, the moduli space of pure type anticanonical pairs with involution may be identified with the quotient $\operatorname{Hom}\left(\Lambda, \mathbb{C}^{*}\right) / W_{\Lambda}$, where Λ is the root lattice associated to the corresponding Dynkin diagram and W_{Λ} is its Weyl group.

Moduli and Losev-Manin Spaces

The space $\operatorname{Hom}\left(\Lambda, \mathbb{C}^{*}\right)$ admits a natural compactification to a toric variety $X(\Lambda)$ and the action of W_{Λ} extends. Moreover, the boundary points in $X(\Lambda) / W_{\Lambda}$ provide moduli for degenerate anticanonical pairs with involution in a natural way.
In 2000, Losev and Manin showed that $X\left(A_{n}\right)$ may be realised as a compact moduli space for stable $(n+1)$-pointed chains of \mathbb{P}^{1} 's. One may show that there is a natural correspondence between anticanonical pairs with involution that have Dynkin diagram A_{n} and configurations of $(n+1)$ points in \mathbb{P}^{1}. This correspondence identifies the moduli space of $A_{n^{-}}$ type anticanonical pairs with involution with a Losev-Manin moduli space.
One may therefore think of the moduli spaces of $D_{n^{-}}$and $E_{n^{-}}$ type anticanonical pairs with involution as generalisations of Losev-Manin spaces to other simply-laced Dynkin diagrams.

