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This talk is based upon my recent work on the explicit study of degener-
ations of K3 surfaces of degree two. Its contents may be found in more detail
in the preprint [Tho10] and in my doctoral thesis [Tho11b], a copy of which
is currently available on my website:

http://www.ualberta.ca/∼amthomps/

Aim. Study the geometric behaviour at the boundary of the moduli
space P2 of polarised K3 surfaces of degree two (i.e. pairs (S,D), where S is
a K3 surface and D is a nef divisor on S with D2 = 2).

In order to do this, we begin by defining:

Definition 1. A semistable degeneration of K3 surfaces π : X → ∆ (i.e. a
proper, flat, surjective morphism π : X → ∆ whose general fibre Xt = π−1(t)
for t ∈ ∆∗ = ∆ − {0} is a smooth K3 surface, such that X is smooth and
X0 := π−1(0) is reduced with normal crossings) equipped with a divisor H on
X is called a degeneration of K3 surfaces of degree two if H is effective and
flat over ∆, and H induces a nef and big divisor Ht on Xt satisfying H2

t = 2
for all t ∈ ∆∗. The divisor H is called the polarisation divisor on X

Let π : X → ∆ be a semistable degeneration of K3 surfaces of degree
two with polarisation divisor H. Then Kulikov [Kul77] [Kul81] and Persson-
Pinkham [PP81] show that we can perform birational modifications that
affect only the central fibre X0

X //

π
  

X ′

π′
~~

∆

so that π′ : X ′ → ∆ is semistable and has ωX′ ∼ OX′ . Such π′ : X ′ → ∆ is
called a Kulikov model of our degeneration.

Kulikov models are classified by the following theorem:
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Theorem 2. [Per77], [Kul77] [FM83] Let π : X → ∆ be a semistable degen-
eration of K3 surfaces with ωX ∼= OX , such that all components of X0 are
Kähler. Then either

(I) X0 is a smooth K3 surface;

(II) X0 is a chain of elliptic ruled components with rational surfaces at
each end, and all double curves are smooth elliptic curves;

(III) X0 consists of rational surfaces meeting along rational curves which
form cycles in each component. If Γ is the dual graph of X0, then |Γ|,
the topological support of Γ, is homeomorphic to the sphere S2.

This classification will form the first step in our study of the boundary of
P2. We also have:

Theorem 3. [SB83, Theorem 1] After a sequence of elementary modifica-
tions have been performed on X0, we may further assume that H is nef.

Thus, from now on we may assume that we are in the following situation:

Assumption 4. π : X → ∆ is a degeneration of K3 surfaces of degree two
with polarisation divisor H, such that ωX ∼= OX and H is nef.

Using this, we have a naive description of the fibres at the boundary of
P2:

• X0 is a degenerate fibre of Type I, II or III;

• H0 = H ∩X0 is a nef divisor on X0 with H2
0 = 2.

We henceforth call these conditions (∗).
However, there is a problem with this description of the fibres on the

boundary: Kulikov models of a given degeneration are not unique (i.e. the
same π∗ : X∗ → ∆∗ can be completed to several different Kulikov models
π : X → ∆). Elementary modifications can be used to move between these
birationally equivalent models. This means that if we use the above descrip-
tion of the boundary to compactify our moduli space the resulting space will
not be separated.

Solution. We proceed to the relative log canonical model of the pair
(X,H):

φ : X− → Xc := Proj∆

⊕
n≥0

π∗OX(nH).

Results of the minimal model program show that φ defines a birational mor-
phism over ∆∗ and that all of the birationally equivalent Kulikov models
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map to the same relative log canonical model. So a better description of the
fibres on the boundary of P2 would be “those pairs ((Xc)0, (H

c)0) that are
the central fibres in the relative log canonical models of degenerations of K3
surfaces of degree two that satisfy the conclusion of Assumption 4”.

It “just” remains to calculate these images.

Lemma 5. [Tho10, Lemma 4.1] The map φ is a birational morphism and
furthermore, writing

(X0)c := Proj
⊕
n≥0

H0(X0,OX0(nH0))

for the log canonical model of X0, we have that (X0)c and (Xc)0 agree.

Sketch proof. This is a consequence of the base point free theorem [Anc87]
and the theorem on cohomology and base change.

In light of this, we set Xc
0 := (X0)c = (Xc)0. This allows us to restrict

our attention to finding the log canonical models of pairs satisfying (∗).

Example 6. We begin by calculating the log canonical model when X0 is
a fibre of Type I (i.e. a smooth K3). Suppose first that H0 is base point
free. Then a simple Riemann-Roch calculation shows that φ0 := φ|X0 is a
birational morphism

φ0 : X0 −→ Xc
0
∼= X6 ⊂ P(1, 1, 1, 3)

that contracts finitely many curves to Du Val singularities. This surface is
the traditional “double cover of P2” that one normally associates with K3
surfaces of degree two. In analogy with curves of genus two, such K3 surfaces
are called hyperelliptic.

Example 7. Suppose next that H0 has base points. Then Mayer [May72]
shows that |2H0| is base point free and a Riemann-Roch calculation shows
that φ0 is a birational morphism

φ0 : X0 −→ Xc
0
∼= X2,6 ⊂ P(1, 1, 1, 2, 3),

where the degree two relation does not involve the degree two variable, that
contracts finitely many curves to Du Val singularities. Note that Xc

0 cannot
be expressed as a double cover of P2. Instead, it can be seen as a double
cover of the singular rational surface X2 ⊂ P(1, 1, 1, 2), which is isomorphic
to the Hirzebruch surface F4 with the unique (−4)-curve contracted. Such
K3 surfaces are called unigonal.

In fact, we find that these two cases are essentially all that can occur:
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Table 1: φ(X0) = {z2 − f6(xi) = 0} ⊂ P(1, 1, 1, 3) hyperelliptic.
Type Name f6(xi) Comments

I h Reduced f6 has at worst A-D-E’s.

II 0h Reduced f6 has one Ẽ7, one Ẽ8 or two Ẽ8’s.

1 l2(xi)f4(xi) l linear, |l ∩ f4| = 4, f4 may have an Ẽ7.
2 q2(xi)f2(xi) q smooth quadric, |q ∩ f2| = 4.
3 f 2

3 (xi) f3 smooth cubic.
III 0h Reduced f6 has exactly one T2,3,r with r ≥ 7 or T2,q,r

with q ≥ 4 and r ≥ 5.
1 l2(xi)f4(xi) l linear, |l ∩ f4| ≤ 3 with multiplicities ≤ 2.
2 q2(xi)f2(xi) q (possibly nodal) quadric, |q ∩ f2| ≤ 4

(< 4 if q smooth) with multiplicities ≤ 2.
3 f 2

3 (xi) f3 cubic with nodal singularities.

Theorem 8. [Tho10, Theorem 3.1] Let π : X → ∆ be a semistable degenera-
tion of K3 surfaces, with ωX ∼= OX . Let H be a divisor on X that is effective,
nef and flat over ∆, and suppose that H induces a nef and big divisor Ht on
Xt satisfying H2

t = 2 for t ∈ ∆∗.
Then the morphism φ : X → Xc taking X to the relative log canonical

model of the pair (X,H) maps X0 to one of:

• (Hyperelliptic Case) A sextic hypersurface

{z2 − f6(xi) = 0} ⊂ P(1,1,1,3)[x1, x,x3, z].

• (Unigonal Case) A complete intersection

{z2 − f6(xi, y) = f2(xi) = 0} ⊂ P(1,1,1,2,3)[x1, x2, x3, y, z],

where f6(0, 0, 0, 1) 6= 0.

Furthermore, the possible central fibres are classified in tables 1 and 2.
Note the relationship between the entries in these tables and other known

compactifications of the moduli space of K3 surfaces of degree two (fully
explained in [Tho10, Subsection 3.1]):

• (II.1)-(II.4) correspond to the four Type II boundary components ap-
pearing the Baily-Borel-Satake compactification [Fri84]. The case (II.0)
maps to two different components, depending upon whether an Ẽ7 or
Ẽ8 singularity is present.
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Table 2: φ(X0) = {z2 − f6(xi, y) = f2(xi) = 0} ⊂ P(1, 1, 1, 2, 3) unigonal.
Type Name f2(xi) Comments

I u Irreducible φ(X0) has at worst RDP’s.

II 0u Irreducible φ(X0) has one Ẽ7, one Ẽ8 or two Ẽ8’s.
4 l1(xi)l2(xi) li linear, |l1 ∩ l2 ∩ f6| = 3, where φ(X0) may

have one or two Ẽ8’s.
III 0u Irreducible φ(X0) has exactly one T2,3,r with r ≥ 7 or

T2,q,r with q ≥ 4 and r ≥ 5.
4 l1(xi)l2(xi) li linear, |l1 ∩ l2 ∩ f6| = 2, where the curve

{f6 = li = 0} may be non-reduced for
one or both choices of i ∈ {1, 2}.

• All cases appear in Shah’s [Sha80] GIT compactification, although sev-
eral of our cases map to the same GIT points.

Sketch proof of Theorem 8. Recall that, by Lemma 5, we just have to anal-
yse the log canonical model of the pair (X0, H0). Write X0 as a union of
irreducible components X0 = V1 ∪ · · · ∪ Vr and let Hi = H ∩ Vi. Then we
have:

Lemma 9. [Tho10, Lemma 7.1] If H2
i = 0, then Vi is contracted by φ.

This allows us to focus our attention on components Vi with H2
i > 0. We

have:

Theorem 10. [Tho10, Theorem 7.2] After performing a birational modifica-
tion on X0 that does not affect the form of its log canonical model, we may
assume that for any surface Vi with H2

i > 0, the linear system |nHi|

• has no fixed components or base locus for n ≥ 2;

• defines a morphism to projective space that is birational onto its image
for n ≥ 3.

Sketch proof. This follows from known facts about anticanonical pairs [Fri83]
and elliptic ruled surfaces [Tho10, Subsection 4.1] if one can prove that
Fix(|Hi|) does not contain any component of the double locus on Vi. This
can be proved for the central fibre of a degeneration of K3 surfaces of degree
two, but the proof does not work for other polarisations (it relies upon the
fact that the only partitions of 2 are (2) and (1, 1)).

To finish proving the theorem, one just has to explicitly calculate cases
corresponding to different positions of surfaces that have H2

i > 0 within X0.
For instance, in the Type II case we have 5 possibilities:
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1. There is one component Vi with H2
i = 2, that is rational. This case

gives rise to cases (II.0) (where there is exactly one Ẽ7 or Ẽ8 singularity
present), (II.1) and (II.2), distinguished by the intersection number
Hi.KVi .

2. There is one component Vi with H2
i = 2, that is elliptic ruled. This case

gives rise to cases (II.0) (where there are two Ẽ8 singularities present)
and (II.1) (where φ(X0) has an Ẽ7 singularity).

3. There are two components Vi and Vj with H2
i = H2

j = 1, that are both
rational. This gives rise to cases (II.3) and (II.4).

4. There are two components Vi and Vj with H2
i = H2

j = 1, one of which
is rational and the other of which is elliptic ruled. This case gives rise
to case (II.4) (where φ(X0) has exactly one Ẽ8 singularity).

5. There are two components Vi and Vj with H2
i = H2

j = 1, that are both
elliptic ruled. This case gives rise to case (II.4) (where there are two
Ẽ8’s present).

As well as the study of the moduli of K3 surfaces of degree two, this
result has applications to the construction of threefolds fibred by K3 surfaces
of degree two, by giving explicit constraints on the types of singular fibres
that can arise. This is explored in the preprint [Tho11a].

More specifically, let X be a (possibly slightly singular) threefold that
admits a semistable fibration π : X → S over a nonsingular curve S, with
general fibre a smooth K3 surface. Let L be a line bundle on X that induces
a nef and big line bundle with self-intersection number two on a general fibre.

Given this, we see that any such K3-fibred threefold uniquely determines
a certain 5-tuple of data on the base curve S, and that from this data the
relative log canonical model of the polarised variety (X,L) over S can be
explicitly reconstructed. Briefly, this construction works by defining a ratio-
nal surface bundle on S with fibres P2 and X2 ⊂ P(1, 1, 1, 3), then taking a
double cover of this to obtain the relative log canonical model of X.

Furthermore we see that, under certain conditions, any such 5-tuple of
data arises from some threefold fibred by K3 surfaces of degree two and can
be used to reconstruct its relative log canonical model. This is a K3 surface
analogue of Catanese and Pignatelli’s main result [CP06, Theorem 4.13]. In
particular, it proves a complete characterisation of the threefolds that can
occur as relative log canonical models of threefolds fibred by K3 surfaces of
degree two, and gives a method to construct them explicitly.
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Finally, a less obvious application is to the study of threefolds fibred by
K3 surfaces that admit a polarisation by the hyperbolic plane lattice H. It
is not difficult to prove that the general H-polarised K3 surface is exactly
the unigonal K3 from Example 7, and that any unigonal K3 admits an H-
polarisation. So by restricting our main result to the case where the general
fibre is unigonal, we may obtain a classification of degenerate H-polarised
K3 surfaces. A modification of the methods described above should then
allow the explicit construction of threefolds fibred by K3 surfaces admitting
an H-polarisation.
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