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1 What is a degeneration?

Definition. A degeneration of compact complex manifolds of dimension n is
a proper map � : X → Δ, where X is a complex manifold and Δ = {z ∈ ℂ ∣
0 ≤ ∣z∣ < 1} is the unit disc, such that the restriction �′ : X∗ → Δ∗ (where
Δ∗ := Δ∖{0}) is a smooth map with fibres of dimension n.

Remark In this talk we frequently switch back and forth between discussing
compact complex manifolds and algebraic varieties. We will try to make it
clear which category we are working in when it is important to do so.

2 Why do we study them?

∙ To compactify moduli spaces of smooth varieties.

∙ To study singularities: If a singularity occurs in the central fibre of a
degeneration, we can learn a lot about the singularity by studying the
degeneration. For example, we know that the singularity is smoothable.

∙ To assist in the birational classification of smooth varieties: By Iitaka’s
fibration, one is lead to consider varieties V that admit a morphism
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f : V → W whose general fibre is a smooth connected variety with
Kodaira dimension � = 0. The properties of V (the canonical class, for
example) are closely linked to the properties of the singular fibres in
such a fibration, which can be studied using the theory of degenerations.

This talk will primarily be concerned with the third case.

3 What do we want to know?

One of the fundamental problems in degeneration theory is that of finding a
“good” birational model of a degeneration to study. We will investigate this
further in the case where the general fibre has � = 0.

So let � : X → Δ be a degeneration of algebraic varieties of dimension
n (where n = 1 or 2). By Horikawa’s theorem, we may assume that X is
smooth and �−1(0) = X0 is a divisor with normal crossings.

These are still not easy to study, because the central fibre is not necessarily
reduced, which makes the problem very combinatorially difficult (we will
discuss this later; compare Kodaira’s classification of singular elliptic curves).

However, many of the useful properties (e.g. properness) of the degener-
ation are preserved under base change of order m, defined by the diagram:

X ′ //

�′

��

X

�

��

Δ
� // Δ

where the map � is given by:

� : t 7−→ tm.

Note here that X ′ may be singular, even if X is not.
Furthermore, we have:

Theorem (Knudsen-Mumford-Waterman ’73). Given � : X → Δ, there
exists m such that, if �′ : X ′ → Δ is the base change of order m, there is a
birational modification Y of X ′ such that Y is smooth and Y0 is reduced with
only normal crossings.

We have a diagram:

Y //

�

��

X ′ //

�′

��

X

�

��

Δ Δ // Δ
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We call � : Y → Δ a semistable degeneration (note that this is related to
semistability in the sense of compactifying moduli spaces).

In light of this, we will restrict our attention to the study of semistable
degenerations.

4 Elliptic curves

Let � : X → Δ be a degeneration of curves such that �−1(t) = Xt is a
smooth curve of genus 1 (not necessarily semistable).

The first obvious “good” model to take for the degeneration is the relative
minimal model, obtained by contracting all (−1)-curves contained in a fibre.
The singular fibres of such a model were famously classified by Kodaira.

In the case where the fibration has a section, there is also a second can-
didate for a “good” model: The Weierstass model, that is obtained by con-
tracting all components of X0 that do not meet the section. In this case, the
total space may have rational double point singularities. However, Weier-
strass models have a nice explicit construction (due to Nakayama) that makes
them easy to study.

Finally, we note what happens when we proceed to the semistable degen-
eration. In this case, Kodaira’s classification simplifies and there are only
two possibilities for the central fibre of the minimal model: A smooth elliptic
curve or a cycle of rational curves of self-intersection (−2). This highlights
nicely the combinatorial advantage of the semistable assumption.

5 The surface case

Let � : X → Δ be a semistable degeneration of surfaces such that �−1(t) =
Xt is a smooth surface with � = 0.

The first “good” model that we may consider is again the minimal model.
However, there is a problem with this: The total space may be singular, with
terminal singularities. These have been listed and classified, but the classifi-
cation is rather complex (See Young person’s guide to canonical singularities,
by M. Reid). For this reason, we seek a nonsingular model (in fact, this new
model will turn out to be related to the minimal model in certain cases).

We have:

Theorem (Kulikov ’77, ’81, Persson-Pinkham ’81). If � : X → Δ is a
semistable degeneration of surfaces with KXt ∼ 0 for t ∕= 0 (i.e. Xt is a K3
surface, complex torus or Kodaira surface) and if all components of X0 are
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Kähler, then there exists a birational modification X ′ of X, isomorphic to X
over Δ∗, such that KX ∼ 0.

This suggests that, for semistable degenerations of surfaces with � =
0, we may be able to make the pluricanonical bundle of the total space
trivial, giving the “good” model we are looking for. Unfortunately, there
exist degenerations � : X → Δ with mKXt ∼ 0 for some m > 0, such that
all components of X0 are Kähler but mKY is not trivial for any birational
modification Y of X. To solve this problem, we shall restrict our attention
to those cases where the pluricanonical bundle can be made trivial, and call
a model X a Kulikov model if mKX ∼ 0.

It is possible to completely classify the central fibres of Kulikov models,
but first we need a technical definition:

Definition. Let � : X → Δ be a semistable degeneration of surfaces. Write
X0 =

∪N
i=1 Vi, for irreducible components Vi. Define the dual graph Γ of X0

as follows: Γ is a simplicial complex whose vertices P1, . . . , PN correspond to
the components V1, . . . , VN of X0. The simplex ⟨Pi1 , . . . , Pim⟩ belongs to Γ if
and only if Vii ∩ ⋅ ⋅ ⋅ ∩ Vim ∕= ∅.

Classification Theorem (Kulikov ’77, Persson ’77). Let � : X → Δ be
semistable with mKX ∼ 0 for some m > 0, such that all components of X0

are Kähler. Then either:

Type I X0 is smooth.

Type II X0 is a cycle of elliptic ruled components or a chain of elliptic ruled
components (possibly with rational surfaces at one or both ends of the
chain) and all double curves are smooth elliptic.

Type III X0 consists of rational surfaces meeting along rational curves that
form cycles in each component. The dual graph Γ of X0 has support
∣Γ∣ equal to S2, ℝℙ2, S1 × S1 or K2 (the Klein bottle).

We have the following table:
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Type ∣Γ∣ Xt

I Point Same as X0

Interval, both ends elliptic Hyperelliptic
Interval, one end rational Enriques

II Interval, both ends rational K3
S1 Complex torus, hyperelliptic or

Kodaira (primary or secondary)
S2 K3

III ℝℙ2 Enriques
S1 × S1 Complex torus or 1∘ Kodaira
K2 Hyperelliptic or 2∘ Kodaira

Unfortunately, Kulikov models are not unique. We illustrate this with an
example:

Example Consider the degeneration:

X := {z2 = g3(w, x, y)2 + tf6(w, x, y)} ⊂ ℙ(1, 1, 1, 3)×Δ

The general fibre Xt is a sextic in ℙ(1,1,1,3)[w, x, y, z], i.e. a ⟨2⟩-polarised K3
surface. X0 is the locus {z2 = g3(w, x, y)2}, which is the union of the two
(nonsingular) surfaces:

Y0 := {z = g3(w, x, y)}
Y1 := {z = −g3(w, x, y)}

These are rational surfaces, meeting along the elliptic curve g3(w, x, y) = 0.
However, X is singular, with 18 singular points lying on the intersection
Y0 ∩ Y1 ⊂ X0.

A Kulikov model for X is obtained by resoving these singularities. We
may do this by blowing them up in the fibre X0. But we have a choice to
make: Do we blow them up in Y0 or Y1?

This leads to the equivalent models:

−1

Y0 Y1

−→
Y0

×
Y1

←−
−1

Y0 Y1

We may pass between them with an elementary modification of Type I:
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−1

Y0 Y1

←−
−1 −1

Y0 Y1

ℙ1 × ℙ1

−→
−1

Y0 Y1

Where the first morphism blows up the (−1)-curve in Y0 and the second
morphism contracts ℙ1 × ℙ1 along its other ruling.

There are also elementary modifications of Types 0 and II, but we have
no time to study them here. They are important because of the following
result:

Theorem (Shepherd-Barron ’83). If X → Δ and X ′ → Δ are two bira-
tionally equivalent Kulikov models of a degeneration of polarised K3 sur-
faces, then X ′ is obtained from X by a sequence of elementary modifications
of Types 0, I and II.

6 A few loose ends

We mentioned earlier that in certain cases the Kulikov model is related to
the minimal model. In fact, for Type II degenerations, Crauder (Minimal
models and degenerations of surfaces with Kodaira number zero, 1994) has
proved that the minimal model may be obtained from the Kulikov model by
the careful contraction of components in X0. Unfortunately, contracting the
wrong components can lead to non-terminal singularities.

Finally, we would also like to mention briefly the status of the classifi-
cation in the non-reduced (i.e. non-semistable) case. This classification was
completed in the Type II case by Crauder (Triple-point-free degenerations
of surfaces with Kodaira number zero, in the book The birational geometry
of degenerations). However, his classification is extremely combinatorially
complex, which suggests that a similar result for Type III degenerations is
somewhat unfeasible.
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