
The Construction Of Ample ⟨2⟩-Polarised
K3-Fibrations

Alan Thompson

November 20, 2008

This talk is based upon the preprint A Model For Ample ⟨2⟩-Polarised
K3-Fibrations, which is available from the preprints section of my website:

http://people.maths.ox.ac.uk/∼thompsona

Full proofs of all results (or references to them) may be found there.

This talk aims to define ample ⟨2⟩-polarised K3-fibrations, then provide a
general method to construct them. We begin with some information about
the Picard group of a K3 surface, which will enable to define the notion of a
polarisation. First, however, we recall the definition of a K3 surface:

Definition 1 A K3 surface is a nonsingular, projective, algebraic surface X
with KX ∼ 0 and ℎ1(X,OX) = 0.

Consider the cohomology group H2(X,ℤ). This group is torsion-free and
can be given the structure of a lattice, with bilinear form induced by the
cup-product pairing. This lattice has signature (3,19) and is isometric to the
K3 lattice

L := (−E8)⊕ (−E8)⊕H ⊕H ⊕H,
where H denotes the hyperbolic plane (an even, unimodular, indefinite lattice
of rank 2) and E8 is the root lattice E8 (an even, unimodular positive definite
lattice of rank 8).

Now, by the exponential cohomology sequence

⋅ ⋅ ⋅ → H1(X,OX)→ H1(X,O∗X)→ H2(X,ℤ)→ H2(X,OX)→ ⋅ ⋅ ⋅

we obtain an injective map Pic(X) ↪→ H2(X,ℤ). This realises Pic(X) as a
sublattice of L of signature (1, �(X) − 1) (where �(X) denotes the rank of
the Picard group of X).
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The ample divisor classes in Pic(X) are precisely those that map to the
Kähler classes in H2(X,ℝ) (which contains H2(X,ℤ) as a subgroup). Let
C+X denote the Kähler cone in H2(X,ℝ). Then the ample divisor classes are
given by

Pic(X)+ := C+X ∩H
2(X,ℤ).

Now we are in a position to start talking about polarisations of K3
surfaces. Let M be an even, non-degenerate lattice of signature (1,t) (for
1 ≤ t ≤ 19). Then we have:

Definition 2 An M -polarised K3 surface is a pair (X, j), where X is a K3
surface and j : M ↪→ Pic(X) is a primitive lattice embedding.

We would now like to have a criterion for j(M) to contain an ample divisor
class. If this happens, we can say that (X, j) is ample M-polarised. To do
this, we emulate the construction of the cone of Kähler classes in H2(X,ℤ) to
get a subset C+M ⊂M (however, this construction is not terribly enlightening
so we omit the details from this talk). Then we say:

Definition 3 (X, j) is called ample M -polarised if

j(C+M) ∩ Pic(X)+ ∕= ∅.

Example 4 Let M be the lattice ⟨2⟩. This is a free ℤ-module of rank 1,
generated over ℤ by e with ⟨e, e⟩ = 2. Let (X, j) be an ample ⟨2⟩-polarised
K3 surface. Then j(e) corresponds to a linear system of ample divisors ∣D∣
on X. Assuming ∣D∣ to be base point free (the generic case), a simple appli-
cation of Riemann-Roch gives that X can be realised as a sextic hypersurface
in the weighted projective space ℙ(1, 1, 1, 3).

We next want to construct a fibration by such surfaces. An obvious way to
do this is to begin with a fibration by weighted projective spaces ℙ(1, 1, 1, 3),
then take a sextic hypersurface in each in a way that gives a flat family over
the base. To get this weighted projective fibration, we define:

Definition 5 Let S be a scheme and let (a0, . . . , an) be a sequence of strictly
positive integers. Define a weighted locally free sheaf with weights (a1, . . . , an)
to be a locally free sheaf of OS-modules ℰ together with an ordered decompo-
sition ℰ ∼= ℰ0⊕ ⋅ ⋅ ⋅⊕ℰn such that each ℰi is a locally free sheaf and such that
the direct sum is to be interpreted as a graded sheaf with ℰi placed in degree
ai for 0 ≤ i ≤ n.
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Definition 6 Let S be a scheme. Given a weighted locally free sheaf ℰ with
weights (a0, . . . , an), let S̃ym(ℰ) denote the weighted symmetric algebra of ℰ,

where we insist that ℰi have homogeneous degree ai in S̃ym(ℰ). We define
the weighted projective bundle associated to ℰ to be the S-scheme

ℙ̃S(ℰ) := Proj(S̃ym(ℰ))
p−→ S

The first thing that we want to know about weighted projective bundles
is that the fibres are the weighted projective spaces that we expect. We have:

Lemma 7 (Mullet ’06) Let S be a nonsingular variety over ℂ and let ℰ ∼=
ℰ0 ⊕ ⋅ ⋅ ⋅ ⊕ ℰn be a weighted locally free sheaf with weights (a0, . . . , an). Then

the weighted projective bundle ℙ̃S(ℰ) is a locally trivial fibre bundle over S
with fibre the weighted projective space ℙ(a0, . . . , a0, a1, . . . , an−1, an, . . . , an),
where each ai appears with multiplicity rank(ℰi).

Now we are finally ready to begin the construction of our ⟨2⟩-polarised
K3-fibrations. First, however, we need to define them. We begin by letting
M be an even, non-degenerate lattice of signature (1, t), for 0 ≤ t ≤ 19.
Then we define:

Definition 8 Let S be a normal complex variety. An ample M -polarised
K3-fibration of S, denoted (X, �, j), consists of:

1. A normal complex variety X,

2. A projective, flat, surjective morphism � : X → S with connected fibres,
whose general fibres are K3 surfaces,

3. A ℤ-module homomorphism j : M → Pic(X/S) that induces a primi-
tive lattice embedding jF : M → Pic(F ) on a general fibre F , making
(F, jF ) into an ample M-polarised K3 surface.

Now let S be a nonsingular curve and let M be the lattice ⟨2⟩. Let ℰ
be a rank 3 vector bundle and ℒ a line bundle on S. Treat ℰ ⊕ ℒ as a
weighted locally free sheaf with weights (1,3) and define Y := ℙ̃S(ℰ ⊕ ℒ).
Let p : Y → S be the natural projection and OY (1) be the tautological line
bundle on Y . Then, by Lemma 7, Y is a locally trivial fibre bundle on S
with fibre ℙ(1, 1, 1, 3).

We next want to construct a divisor on Y which intersects the general
fibre in a hypersurface of degree 6. So consider ℙS(Sym6(ℰ)⊕OS). There is
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an open embedding Sym6(ℰ) ↪→ ℙS(Sym6(ℰ)⊕OS) given by v 7→ [v, 1]. We
henceforth identify Sym6(ℰ) with its image under this embedding. Let

a : ℒ2 −→ ℙS(Sym6(ℰ)⊕OS)

be a sheaf homomorphism such that Im(a)∩Sym6(ℰ) ∕= ∅. Then there exists
an open set S0 ⊂ S such that Im(a) ⊂ Sym6(ℰ) on S0. Hence, restricting
to S0, we have a ∈ Γ(S0,ℒ−2 ⊗ Sym6(ℰ)). Let p0 : Y0 → S0 denote the
restriction of p to S0. Let a′ ∈ Γ(Y0, p

∗
0ℒ−2 ⊗ Sym6(p∗0ℰ)) denote the inverse

image of a under p0.
Now let Z and T be the sections of p∗ℰ∨ ⊗ OY (1) and p∗ℒ−1 ⊗ OY (3)

corresponding to the natural morphisms:

p∗ℰ −→ OY (1)

p∗ℒ −→ OY (3).

Denote by W 3
0 (ℰ ,ℒ, a) the divisor on Y0 defined by the equation T 2 − a′Z6.

Then W0 := W 3
0 (ℰ ,ℒ, a) is flat over S0, so there exists a unique closed sub-

scheme W 3(ℰ ,ℒ, a) ⊂ Y whose restriction to Y0 is W0.

Definition 9 W 3(ℰ ,ℒ, a) is called the 3rd family K3-Weierstrass model over
S of type (ℰ ,ℒ, a).

W := W 3(ℰ ,ℒ, a) has the following properties:

1. W is a normal complex variety and p : W → S is a projective, flat,
surjective morphism whose general fibres are irreducible sextic hyper-
surfaces in ℙ(1, 1, 1, 3).

2. Let � be a section of p∗ℰ . Let �′ be the push-forward of � by the
morphism p∗ℰ → OY (1). Define Σ3(ℰ ,ℒ, a) := W ∩ (�′)0. Then, on
a general fibre Ws, the divisor Σs = Σ3(ℰ ,ℒ, a) ∩ Ws defines a 2:1
morphism Ws → ℙ2, branched over a sextic curve, under which Σs is
the inverse image of a hyperplane section. So Σs is an ample divisor
on Ws with self-intersection number 2.

Finally, we have:

Theorem 10 Let S be a nonsingular curve. Let e be a generator of ⟨2⟩ as
a free ℤ-module. Let (X, �, j) be an ample ⟨2⟩-polarised K3-fibration of S
and let D be the divisor on X defined by D := j(e). Suppose that, on a
general fibre F , ∣D∣F ∣ is a base point free linear system. Then there exists
a 3rd family K3-Weierstrass model W 3(ℰ ,ℒ, a) over S and a birational map
� : X− → W 3(ℰ ,ℒ, a) over S such that �∗(D) ∼ Σ3(ℰ ,ℒ, a).
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