
Hodge Theory, Period Mappings And The
Moduli Of K3’s

Alan Thompson

April 2, 2009

References
All results referenced in this talk may be found in the book Compact Complex
Surfaces (2nd Edition), by Barth, Hulek, Peters and Van de Ven. All result
numbers will refer to this book, unless otherwise stated.

1 Hodge Theory

Let X be a compact Kähler manifold. Define Ωp
X to be the sheaf of germs of

holomorphic p-forms on X. Then define

Hp,q(X) := Hq(Ωp
X)

(This is not the formal definition, but is equivalent in our case by Dolbeault’s
isomorphism, Section I.12). We let ℎp,q(X) := dimHp,q(X). Then we have:

Theorem I.13.4. (Hodge Decomposition)

Hk(X,ℂ) =
⊕

p+q=k

Hp,q(X)

This is useful because it relates topological and sheaf cohomology on X.
It is an example of a Hodge structure.

2 K3 Surfaces

A K3 surface is a compact complex surface X with trivial canonical class
KX = 0 and zero first Betti number b1(X) = dimH1(X,ℂ) = 0. The first
thing we’d like to know about K3 surfaces is the form of their cohomology
and, more specifically, its Hodge decomposition.
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Let L denote the lattice

L := (−E8)⊕ (−E8)⊕H ⊕H ⊕H.

It is a free ℤ-module of rank 22, with bilinear form (−,−) of signature (3, 19)
given by the above decomposition.

Furthermore, let Lℂ := L⊗ ℂ.

Proposition VIII.3.3. Let X be a K3 surface. Then

∙ H1(X,ℤ) = H3(X,ℤ) = 0

∙ H2(X,ℤ) is torsion free of rank 22 and, when equipped with the cup-
product pairing, isometric to L

From this proposition, we note that any K3 surface must be Kähler (any
2-form must be closed, since H3(X,ℂ) = 0; the positivity condition is slightly
harder to show, but can be proven by examining the lattice L). So we have
a Hodge decomposition:

Proposition VIII.3.4. Let X be a K3 surface. Then

∙ ℎ1,0(X) = ℎ0,1(X) = ℎ2,1(X) = ℎ1,2(X) = 0

∙ ℎ2,0(X) = ℎ0,2(X) = 1

∙ ℎ1,1(X) = 20

3 The Period Map for K3’s

For ! ∈ Lℂ, we denote by [!] ∈ ℙ(Lℂ) the corresponding line (i.e. the line
ℂ.!, considered as a point in ℙ(Lℂ)) and set

Ω := {[!] ∈ ℙ(Lℂ) ∣ (!, !) = 0, (!, !) > 0}.

Ω is called the period domain.
A marked K3 surface (X,�) is a K3 surface X along with a choice of

isometry � : H2(X,ℤ) → L. Since ℎ2,0(X) = 1, the complexified map
�ℂ : H2(X,ℂ) → Lℂ takes the nowhere vanishing holomorphic 2-forms (i.e.
elements of H2(X,Ω2

X)) to a line in Lℂ, which determines a point in ℙ(Lℂ).
As such a 2-form !X has (!X , !X) = 0 and (!X , !X) > 0 (by the definition

of L), (X,�) corresponds to a point in Ω.
Looking at this, Ω seems like a good candidate for a moduli space of

marked K3’s.
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4 The Torelli Theorem and the Moduli of

K3’s

If X and X ′ are K3 surfaces, an isomorphism of ℤ-modules

H2(X,ℤ) −→ H2(X ′,ℤ)

is called a Hodge isometry if

1. It preserves the cup-product, and

2. Its ℂ-linear extension H2(X,ℂ)→ H2(X ′,ℂ) preserves the Hodge de-
composition.

Then we have:

Theorem VIII.11.2. (Weak Torelli) Two K3 surfaces X and X ′ are iso-
morphic if there exists a Hodge isometry � : H2(X,ℤ)→ H2(X ′,ℤ).

Corollary. Two K3 surfaces are isomorphic if and only if there are markings
for them such that the corresponding period points are the same.

Theorem VIII.14.2. (Surjectivity of the Period Map) Every point of
Ω occurs as the period point of a marked K3 surface

If one makes additional assumptions on the form of �, then one can further
show that the isomorphism in the weak Torelli theorem is unique. This gives
the Torelli theorem for K3’s.

The weak Torelli theorem gives us that Ω forms a coarse moduli space for
marked K3 surfaces. But, using the full Torelli theorem, we may try to go
further and construct a fine moduli space for marked K3’s. Unfortunately,
following the construction here, the candidate moduli space that we get is
not separated. In order to solve this we must add additional structure, in
the form of marked pairs. Unfortunately, there is no time to cover these in
this talk; full details may be found in Section VIII.12.
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