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For the interested reader, all of the results mentioned in this talk may be
found in either [BHPvdV04, Chapter VIII] or [Sca87].

1 Hodge theory for K3 surfaces

Throughout this talk, X will denote an arbitrary K3 surface.
Recall that the Hodge diamond of any K3 surface looks like
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so that all the interesting behaviour happens in the second cohomology group.
As we shall see, the structure of this cohomology group determines the isomor-
phism class of a K3 surface, so can be used to construct a moduli space for K3
surfaces.

The second cohomology group H2(X,Z) with the cup-product pairing forms
a lattice isometric to the K3 lattice

ΛK3 := H ⊕H ⊕H ⊕ E8 ⊕ E8,

where H is the hyperbolic plane (an even, unimodular, indefinite lattice of
rank 2) and E8 is the even, unimodular, negative definite lattice of rank 8
corresponding to the Dynkin diagram E8. The lattice ΛK3 has rank 22 and
signature (3, 19). We then have:

Theorem 1 (Weak Torelli). Two K3 surfaces X and X ′ are isomorphic if
and only if there is a lattice isometry H2(X,Z) → H2(X ′,Z), whose C-linear
extension H2(X,C) → H2(X ′,C) preserves the Hodge decomposition (such an
isometry is called a Hodge isometry).
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2 The period mapping

We can use the weak Torelli theorem to begin defining a moduli space for K3
surfaces. We begin by defining a marking on X.

Definition 2. A marking on X is a choice of isometry φ : H2(X,Z)→ ΛK3.

Let ω ∈ H2,0(X) = H0(X,Ω2
X) be any class. Then (ω, ω) = 0 and (ω, ω̄) >

0. So, if φ is a marking for X and φC is its complexification, then φC(H2,0(X))
defines a point in

ΩK3 := {[ω] ∈ P(ΛK3 ⊗ C) | (ω, ω) = 0, (ω, ω̄) > 0}.

ΩK3 is a 20-dimensional quasi-projective variety called the period space of K3
surfaces. The point defined by φC(H2,0(X)) is the period point of the marked
K3 surface (X,φ).

The Weak Torelli theorem gives that two K3 surfaces are isomorphic if and
only if there are markings for them such that the corresponding period points
are the same. Combining this with the following theorems

Theorem 3 (Local Torelli). The map from the versal deformation space of X
to ΩK3 is a local isomorphism.

Theorem 4 (Surjectivity of the period map). Every point of ΩK3 occurs as the
period point of some marked K3 surface.

We seem to be close to having a moduli space for K3 surfaces: all that
remains is to quotient ΩK3 by the action of a group to identify period points
corresponding to isomorphic K3’s. However, on closer inspection we find that
this group action is not nice (it is not properly discontinuous), so the quotient
will have bad properties (it won’t be Hausdorff).

3 Polarisations

To solve this problem, we will restrict our attention to a subclass of K3 surfaces
that have better properties: the polarised K3 surfaces.

Definition 5. A (pseudo-)polarised K3 surface of degree 2k (for k > 0) is a pair
(X,h) consisting of a K3 surface X and a (pseudo-)ample class h ∈ H2(X,Z)
with h.h = 2k.

For pseudo-polarised K3 surfaces we have an upgraded version of the Torelli
theorem, which will enable us to build a moduli space for them.

Theorem 6 (Strong Torelli). Let (X,h) and (X ′, h′) be pseudo-polarised K3
surfaces. Assume that there is a Hodge isometry ϕ : H2(X ′,Z) → H2(X,Z)
with ϕ(h′) = h. Then there is a unique isomorphism f : X → X ′ with ϕ = f∗.
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We now construct a period space for polarised K3 surfaces. Fix once and
for all a primitive class h ∈ ΛK3 with h2 = 2k > 0. Then a marked (pseudo-)
polarised K3 surface of degree 2k is a marked K3 surface (X,φ) such that φ−1(h)
is the class of a (pseudo-)ample line bundle on X.

If (X,φ) is a marked pseudo-polarised K3 surface of degree 2k and if ω ∈
H2,0(X) is any class, then (ω, ω) = 0, (ω, ω̄) > 0 and (ω, h) = 0. So the period
point of (X,φ) lies in

Ω2k := {[ω] ∈ P(ΛK3 ⊗ C) | (ω, ω) = 0, (ω, ω̄) > 0, (ω, h) = 0}.

Ω2k is called the period space of pseudo-polarised K3 surfaces of degree 2k. It is
a 19-dimensional quasi-projective variety.

Let Γ(h) denote the group of isometries of ΛK3 that fix the class h. Then
Γ(h) acts properly discontinuously on Ω2k, so the quotient Γ(h) \ Ω2k will be
nicely defined. Strong Torelli and surjectivity of the period map give:

Theorem 7. The quotient

F2k := Γ(h) \ Ω2k

is the moduli space of pseudo-polarised K3 surfaces of degree 2k.

F2k is a 19-dimensional quasi-projective variety with only finite quotient
singularities. It may be realised as a quotient of a bounded symmetric domain
of type IV by an arithmetically defined discrete group of automorphisms, a fact
that makes it very amenable to explicit study.

4 Degenerations

For the remainder of this talk, we will discuss what happens when we proceed to
the boundary of this moduli space. In order to do this we study degenerations.

Definition 8. A degeneration of K3 surfaces is a proper, flat, surjective mor-
phism π : X → ∆ from a smooth threefold X to the unit disc ∆, whose general
fibre Xt = π−1(t) for t 6= 0 is a smooth K3 surface. Note that we do not assume
that X is algebraic, but we will make the assumption that the components of
the central fibre X0 = π−1(0) are Kähler.

After a base change and a birational modification, we may always arrange
for our degeneration to be semistable, i.e. X0 is a reduced divisor with nor-
mal crossings. Furthermore, after an additional birational modification we may
arrange that the canonical bundle ωX is trivial. The resulting degeneration is
called a Kulikov model. Kulikov models are useful because there exists a coarse
classification for their central fibres.

Theorem 9. Let π : X → ∆ be a Kulikov degeneration. Then either

(Type I ) X0 is a smooth K3 surface;
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(Type II ) X0 is a chain of elliptic ruled components with rational surfaces at
each end, and all double curves are smooth elliptic curves;

(Type III ) X0 consists of rational surfaces meeting along rational curves which
form cycles in each component. If Γ is the dual graph of X0, then
Γ is a triangulation of the 2-sphere.

These cases can also be distinguished by the action of monodromy on the
second cohomology H2(Xt,Z) of a general fibre. Let T denote the Picard-
Lefschetz transformation on H2(Xt,Z) obtained by transporting classes around
0 and let N = log T . Then N is nilpotent and has N = 0 if X0 is Type I,
N2 = 0 and N 6= 0 if X0 is Type II, and N3 = 0 and N2 6= 0 if X0 is Type III.

5 Compactifications

Given that we have such a good description of the moduli space for pseudo-
polarised K3 surfaces, it is natural to ask whether there is a nice way to com-
pactify this moduli space, i.e. find a compact variety F2k that contains F2k as
an open subset. Ideally, one would like to do this in such a way that the bound-
ary F2k−F2k encodes some geometric data about the corresponding degenerate
fibres.

Probably the best known compactification of F2k is the Baily-Borel-Satake
compactification. This is a method to compactify any arithmetic quotient of
a bounded symmetric domain, of which F2k is an example. In this case the
boundary is a union of 0- and 1- dimensional strata. These have some geometric
meaning: the 0-dimensional strata correspond to degenerate fibres of Type III,
and the 1-dimensional strata to fibres of Type II. Furthermore, the 1-dimensional
strata are all rational curves, which are parametrised by the j-invariant of the
elliptic double curves of the corresponding Type II degeneration.

Unfortunately this is about all one can say: the boundary in the Baily-Borel-
Satake compactification is simply too small to encode more detailed geometric
data about degenerate fibres. Many other compactifications exist (toroidal,
GIT, KSBA), encapsulating varying amounts of geometry, but as yet there does
not seem to be a canonical choice amongst them.
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