Degenerations Of $\langle 2\rangle$-Polarised K3 Surfaces

Alan Thompson

October 22, 2009

This talk is based upon the preprint Degenerations of $\langle 2\rangle$-Polarised K3 Surfaces, which is available from the preprints section of my website:
http://people.maths.ox.ac.uk/~thompsona
Full proofs of all results (or references to them) may be found there.
This talk follows on from two talks (The Construction of Ample $\langle 2\rangle$ Polarised K3-Fibrations and Degenerations of Surfaces with Kodaira Number Zero) given last year. However, I don't expect people to remember the details, so we will recap them briefly now.

Definition. $A\langle 2\rangle$-Polarised K3 Surface (X, H) is a 2-dimensional nonsingular complex algebraic surface X with $K_{X} \sim 0$ and $b_{1}(X)=0$ (a K3 surface), and an ample divisor H on X satisfying $H^{2}=2$

If H is base point free, H defines an isomorphism

$$
\begin{gathered}
X \xrightarrow{\sim} X_{6}=\left\{z^{2}=f_{6}\left(x_{1}, x_{2}, x_{3}\right)\right\} \subset \mathbb{P}_{(1,1,1,3)}\left[x_{1}, x_{2}, x_{3}, z\right] \\
\downarrow_{2: 1} \\
\mathbb{P}^{2}\left[x_{1}, x_{2}, x_{3}\right]
\end{gathered}
$$

exhibiting X as a double cover of \mathbb{P}^{2} ramified over a nonsingular sextic curve $f_{6}\left(x_{1}, x_{2}, x_{3}\right)=0$. H is mapped to the pull-back of the hyperplane section in \mathbb{P}^{2} under this map. We are interested in studying families of such things.

Let Δ denote a small complex disc. Let $\pi: Y \rightarrow \Delta$ be a projective, flat, surjective morphism of normal complex varieties whose general fibres (i.e. fibres over $\Delta^{*}=\Delta \backslash\{0\}$) are K3 surfaces. Let H be a divisor on Y that induces a base point free $\langle 2\rangle$-polarisation on a general fibre.

Then it can be shown that there exists a birational map

$$
\mu: Y \rightarrow \rightarrow W \subset \mathbb{P}(1,1,1,3) \times \Delta
$$

that is an isomorphism over Δ^{*}, and such that the morphism $Y_{t} \rightarrow$ $\mathbb{P}(1,1,1,3)$ induced on a general fibre agrees with the morphism defined on Y_{t} by the polarisation induced by H (that was described above). We want to know what happens to the fibre of Y over 0 when we apply μ to it.

However, in order to be able to do this we will need to make some assumptions on Y. We will assume that:

- Y is semistable, i.e. Y is nonsingular and $Y_{0}=\pi^{-1}(0)$ is a reduced divisor with normal crossings. By a theorem of Knudsen-MumfordWaterman ('73), this can always be arranged by a composition of a base change and a series of birational modifications.
- Y is Kulikov, i.e. $K_{Y} \sim 0$. By a theorem of Kulikov ('77, '81) and Persson-Pinkham ('81), this can always be arranged by a further series of birational modifications.

The central fibres in such Y have been classified by Persson ('77), Kulikov ('77) and Friedman-Morrison ('83). We make use of this classification when finding the images of these fibres under μ.

So what can the central fibres Y_{0} be? There are 4 ways in which the assumptions on the general fibre may fail on Y_{0} :
(I) Y_{0} is a smooth K3 surface, H_{0} (the divisor induced on Y_{0} by H) is base point free but not ample.
(II) Y_{0} is not smooth, but a "Type II" degeneration of K3 surfaces, in the classification mentioned above.
(III) Y_{0} is not smooth, but a "Type III" degeneration of K3 surfaces, in the classification mentioned above.
(IV) Y_{0} is a smooth K3 surface, and H_{0} has base points.

We will focus on case (II) in this talk, and see what the effect of μ is on a fibre of this type.

In order to do this, first we need to know what a fibre of Type II looks like. By the classification mentioned before, the central fibre Y_{0} in a Type II degeneration of $K 3$ surfaces is a chain $V_{0} \cup \cdots \cup V_{r}$ of surfaces such that:

- $V_{i} \cap V_{i+1}=D_{i}$ is a smooth elliptic curve for all i.
- $V_{i} \cap V_{j}=\emptyset$ if $|i-j|>1$.
- V_{1}, \ldots, V_{r-1} are surfaces ruled over D_{0}, \ldots, D_{r-2} respectively.
- V_{0} and V_{r} are rational surfaces, i.e. birational to \mathbb{P}^{2}.

Now we have this, we can proceed with finding the image of such a fibre under μ. In order to do this, we aim to find a "special" divisor H^{\prime} on Y, equal to H over Δ^{*}, such that the linear system induced by H^{\prime} on every fibre of Y defines a birational map to $\mathbb{P}(1,1,1,3)$. Then, by the properness of the Hilbert scheme, H^{\prime} will define the map μ on Y, and the induced divisor H_{0}^{\prime} on Y_{0} will define the restriction of μ to Y_{0}. We have the diagram

$$
\begin{aligned}
& Y^{\prime}-\stackrel{H^{\prime}}{\rightarrow} \rightarrow W \subset \mathbb{P}(1,1,1,3) \times \Delta \\
& \widehat{Y}_{0}-\stackrel{H_{0}^{\prime}}{\rightarrow} \int_{W_{0}} \subset \mathbb{P}(1,1,1,3)
\end{aligned}
$$

where our aim is to find W_{0}. In order to do this, however, we need to know what this "special" H^{\prime} is. We have:

Theorem (Friedman '84). There exist integers a_{i} such that, after a series of birational modifications have been applied to Y, the twisted divisor $H^{\prime}=$ $H+\sum_{i=0}^{r} a_{i} V_{i}$ satisfies:

1. H^{\prime} is numerically effective.
2. V_{1}, \ldots, V_{r-1} are minimal ruled.
3. $\left.H^{\prime}\right|_{V_{i}}$ is a sum of fibres for $1 \leq i \leq r-1$.
4. $H^{\prime} \cdot D_{i}>0$ for all i.

This H^{\prime} turns out to be exactly what we are looking for.
Let μ_{0} be the map defined on Y_{0} by H_{0}^{\prime} (which agrees with the restriction of μ to Y_{0}). Then properties (2)-(4) above imply that μ_{0} contracts V_{1}, \ldots, V_{r-1} onto $D_{0} \cong D_{r-1}$. This leaves us with two rational surfaces V_{0} and V_{r} meeting along an elliptic curve $D:=D_{0}$.

Let $H_{0}^{\prime}:=\left.H^{\prime}\right|_{V_{0}}$ and $H_{r}^{\prime}:=\left.H^{\prime}\right|_{V_{r}}$. Then $\left(H_{0}^{\prime}\right)^{2}+\left(H_{r}^{\prime}\right)^{2}=2$ and, by (1) in the theorem, $\left(H_{i}^{\prime}\right)^{2} \geq 0$ for each i. By Riemann-Roch and adjunction, there are four possibilities:

1. H_{i}^{\prime} is connected for $i=0, r$ with $g\left(H_{0}^{\prime}\right)=g\left(H_{r}^{\prime}\right)=0,\left(H_{0}^{\prime}\right)^{2}=\left(H_{r}^{\prime}\right)^{2}=1$ and $H_{i}^{\prime} \cdot D=3$.
2. H_{i}^{\prime} is connected for $i=0, r$ with $g\left(H_{0}^{\prime}\right)=g\left(H_{r}^{\prime}\right)=1,\left(H_{0}^{\prime}\right)^{2}=\left(H_{r}^{\prime}\right)^{2}=1$ and $H_{i}^{\prime} . D=1$.
3. H_{i}^{\prime} is connected for $i=0, r$ with $g\left(H_{0}^{\prime}\right)=1, g\left(H_{r}^{\prime}\right)=0,\left(H_{0}^{\prime}\right)^{2}=2$, $\left(H_{r}^{\prime}\right)^{2}=0$ and $H_{i}^{\prime} \cdot D=2$.
4. H_{0}^{\prime} is connected but $\left|H_{r}^{\prime}\right|$ has no connected members. $g\left(H_{0}^{\prime}\right)=0$, $\left(H_{0}^{\prime}\right)^{2}=2,\left(H_{1}^{\prime}\right)^{2}=0$ and $H_{i}^{\prime} . D=4$.

We will show by means of an example how to use this information to calculate the image of μ_{0}.

Consider case (3) above. We have rational surfaces V_{0} and V_{r} meeting along a smooth elliptic curve D. There are connected divisors H_{0}^{\prime} on V_{0} and H_{r}^{\prime} on V_{r} with $g\left(H_{0}^{\prime}\right)=1, g\left(H_{r}^{\prime}\right)=0,\left(H_{0}^{\prime}\right)^{2}=2,\left(H_{r}^{\prime}\right)^{2}=0$ and $H_{i}^{\prime} \cdot D=2$.

By the properties of rational surfaces, we may assume that the linear system $\left|H_{0}^{\prime}\right|$ has no fixed components or base points, and contains irreducible members. This means that the restriction of μ_{0} to V_{0} will be a morphism (i.e. no points will be blown up).

By Riemann-Roch, $\left|H_{0}^{\prime}\right|$ defines a morphism

$$
\varphi_{H_{0}}: V_{0} \longrightarrow\left\{z^{2}=f_{4}\left(x_{i}\right)\right\} \subset \mathbb{P}_{(1,1,1,2)}\left[x_{1}, x_{2}, x_{3}, z\right]
$$

where $\left\{f_{4}\left(x_{i}\right)=0\right\}$ is a quartic in \mathbb{P}^{2} with at worst A-D-E singularities. D is mapped to the nonsingular curve $\left\{l\left(x_{i}\right)=z^{2}-f_{4}\left(x_{i}\right)=0\right\}$, where l is linear. This is a double cover of the line $\left\{l\left(x_{i}\right)=0\right\} \subset \mathbb{P}^{2}$ ramified over four points (i.e. an elliptic curve).

Next we look at V_{r}. Again, $\left|H_{r}^{\prime}\right|$ has no fixed components or base points. This time, by Riemann-Roch, $\left|H_{r}^{\prime}\right|$ defines a morphism

$$
\varphi_{H_{r}}: V_{r} \longrightarrow \mathbb{P}^{1} .
$$

contracting V_{r} to \mathbb{P}^{1}. Under this morphism D is mapped surjectively to \mathbb{P}^{1}, and the restriction of $\varphi_{H_{r}}$ exhibits D as a double cover of \mathbb{P}^{1} ramified over four points.

The contraction of V_{r} is realised on V_{0} by the map:

$$
\begin{aligned}
g:\left\{z^{2}-f_{4}\left(x_{i}\right)=0\right\} & \longrightarrow\left\{w^{2}-l^{2}\left(x_{i}\right) f_{4}\left(x_{i}\right)=0\right\} \subset \mathbb{P}_{(1,1,1,3)}\left[x_{1}, x_{2}, x_{3}, w\right] \\
\left(x_{i}, z\right) & \longmapsto\left(x_{i}, l\left(x_{i}\right) z\right)
\end{aligned}
$$

So the map defined on V_{0} by the restriction of H is given by $\varphi_{H}\left(V_{0}\right)=$ $g \circ \varphi_{H_{0}}\left(V_{0}\right)$, and

$$
W_{0}=\left\{w^{2}-l^{2}\left(x_{i}\right) f_{4}\left(x_{i}\right)=0\right\} \subset \mathbb{P}_{(1,1,1,3)}\left[x_{1}, x_{2}, x_{3}, w\right] .
$$

