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This talk is based upon the preprint Degenerations of ⟨2⟩-Polarised K3
Surfaces, which is available from the preprints section of my website:

http://people.maths.ox.ac.uk/∼thompsona

Full proofs of all results (or references to them) may be found there.

This talk follows on from two talks (The Construction of Ample ⟨2⟩-
Polarised K3-Fibrations and Degenerations of Surfaces with Kodaira Number
Zero) given last year. However, I don’t expect people to remember the
details, so we will recap them briefly now.

Definition. A ⟨2⟩-Polarised K3 Surface (X,H) is a 2-dimensional nonsingu-
lar complex algebraic surface X with KX ∼ 0 and b1(X) = 0 (a K3 surface),
and an ample divisor H on X satisfying H2 = 2

If H is base point free, H defines an isomorphism

X
∼ // X6 = {z2 = f6(x1, x2, x3)} ⊂ ℙ(1,1,1,3)[x1, x2, x3, z]

2:1
��

ℙ2[x1, x2, x3]

exhibiting X as a double cover of ℙ2 ramified over a nonsingular sextic curve
f6(x1, x2, x3) = 0. H is mapped to the pull-back of the hyperplane section in
ℙ2 under this map. We are interested in studying families of such things.

Let Δ denote a small complex disc. Let � : Y → Δ be a projective,
flat, surjective morphism of normal complex varieties whose general fibres
(i.e. fibres over Δ∗ = Δ∖{0}) are K3 surfaces. Let H be a divisor on Y that
induces a base point free ⟨2⟩-polarisation on a general fibre.

Then it can be shown that there exists a birational map

� : Y− → W ⊂ ℙ(1, 1, 1, 3)×Δ
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that is an isomorphism over Δ∗, and such that the morphism Yt →
ℙ(1, 1, 1, 3) induced on a general fibre agrees with the morphism defined on
Yt by the polarisation induced by H (that was described above). We want
to know what happens to the fibre of Y over 0 when we apply � to it.

However, in order to be able to do this we will need to make some as-
sumptions on Y . We will assume that:

∙ Y is semistable, i.e. Y is nonsingular and Y0 = �−1(0) is a reduced
divisor with normal crossings. By a theorem of Knudsen-Mumford-
Waterman (’73), this can always be arranged by a composition of a
base change and a series of birational modifications.

∙ Y is Kulikov, i.e. KY ∼ 0. By a theorem of Kulikov (’77, ’81) and
Persson-Pinkham (’81), this can always be arranged by a further series
of birational modifications.

The central fibres in such Y have been classified by Persson (’77), Kulikov
(’77) and Friedman-Morrison (’83). We make use of this classification when
finding the images of these fibres under �.

So what can the central fibres Y0 be? There are 4 ways in which the
assumptions on the general fibre may fail on Y0:

(I) Y0 is a smooth K3 surface, H0 (the divisor induced on Y0 by H) is base
point free but not ample.

(II) Y0 is not smooth, but a “Type II” degeneration of K3 surfaces, in the
classification mentioned above.

(III) Y0 is not smooth, but a “Type III” degeneration of K3 surfaces, in the
classification mentioned above.

(IV) Y0 is a smooth K3 surface, and H0 has base points.

We will focus on case (II) in this talk, and see what the effect of � is on a
fibre of this type.

In order to do this, first we need to know what a fibre of Type II looks
like. By the classification mentioned before, the central fibre Y0 in a Type II
degeneration of K3 surfaces is a chain V0 ∪ ⋅ ⋅ ⋅ ∪ Vr of surfaces such that:

∙ Vi ∩ Vi+1 = Di is a smooth elliptic curve for all i.

∙ Vi ∩ Vj = ∅ if ∣i− j∣ > 1.

∙ V1, . . . , Vr−1 are surfaces ruled over D0, . . . , Dr−2 respectively.
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∙ V0 and Vr are rational surfaces, i.e. birational to ℙ2.

Now we have this, we can proceed with finding the image of such a fibre
under �. In order to do this, we aim to find a “special” divisor H ′ on Y ,
equal to H over Δ∗, such that the linear system induced by H ′ on every fibre
of Y defines a birational map to ℙ(1, 1, 1, 3). Then, by the properness of the
Hilbert scheme, H ′ will define the map � on Y , and the induced divisor H ′0
on Y0 will define the restriction of � to Y0. We have the diagram

Y ′
H′

//___ W ⊂ ℙ(1, 1, 1, 3)×Δ

Y0
?�

OO

H′
0 //___ W0 ⊂ ℙ(1, 1, 1, 3)

?�

OO

where our aim is to find W0. In order to do this, however, we need to know
what this “special” H ′ is. We have:

Theorem (Friedman ’84). There exist integers ai such that, after a series
of birational modifications have been applied to Y , the twisted divisor H ′ =
H +

∑r
i=0 aiVi satisfies:

1. H ′ is numerically effective.

2. V1, . . . , Vr−1 are minimal ruled.

3. H ′∣Vi
is a sum of fibres for 1 ≤ i ≤ r − 1.

4. H ′.Di > 0 for all i.

This H ′ turns out to be exactly what we are looking for.
Let �0 be the map defined on Y0 by H ′0 (which agrees with the restric-

tion of � to Y0). Then properties (2)-(4) above imply that �0 contracts
V1, . . . , Vr−1 onto D0

∼= Dr−1. This leaves us with two rational surfaces V0
and Vr meeting along an elliptic curve D := D0.

Let H ′0 := H ′∣V0 and H ′r := H ′∣Vr . Then (H ′0)
2 + (H ′r)

2 = 2 and, by (1) in
the theorem, (H ′i)

2 ≥ 0 for each i. By Riemann-Roch and adjunction, there
are four possibilities:

1. H ′i is connected for i = 0, r with g(H ′0) = g(H ′r) = 0, (H ′0)
2 = (H ′r)

2 = 1
and H ′i.D = 3.

2. H ′i is connected for i = 0, r with g(H ′0) = g(H ′r) = 1, (H ′0)
2 = (H ′r)

2 = 1
and H ′i.D = 1.
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3. H ′i is connected for i = 0, r with g(H ′0) = 1, g(H ′r) = 0, (H ′0)
2 = 2,

(H ′r)
2 = 0 and H ′i.D = 2.

4. H ′0 is connected but ∣H ′r∣ has no connected members. g(H ′0) = 0,
(H ′0)

2 = 2, (H ′1)
2 = 0 and H ′i.D = 4.

We will show by means of an example how to use this information to calculate
the image of �0.

Consider case (3) above. We have rational surfaces V0 and Vr meeting
along a smooth elliptic curve D. There are connected divisors H ′0 on V0 and
H ′r on Vr with g(H ′0) = 1, g(H ′r) = 0, (H ′0)

2 = 2, (H ′r)
2 = 0 and H ′i.D = 2.

By the properties of rational surfaces, we may assume that the linear
system ∣H ′0∣ has no fixed components or base points, and contains irreducible
members. This means that the restriction of �0 to V0 will be a morphism
(i.e. no points will be blown up).

By Riemann-Roch, ∣H ′0∣ defines a morphism

'H0 : V0 −→ {z2 = f4(xi)} ⊂ ℙ(1,1,1,2)[x1, x2, x3, z],

where {f4(xi) = 0} is a quartic in ℙ2 with at worst A-D-E singularities. D is
mapped to the nonsingular curve {l(xi) = z2− f4(xi) = 0}, where l is linear.
This is a double cover of the line {l(xi) = 0} ⊂ ℙ2 ramified over four points
(i.e. an elliptic curve).

Next we look at Vr. Again, ∣H ′r∣ has no fixed components or base points.
This time, by Riemann-Roch, ∣H ′r∣ defines a morphism

'Hr : Vr −→ ℙ1.

contracting Vr to ℙ1. Under this morphism D is mapped surjectively to ℙ1,
and the restriction of 'Hr exhibits D as a double cover of ℙ1 ramified over
four points.

The contraction of Vr is realised on V0 by the map:

g : {z2 − f4(xi) = 0} −→ {w2 − l2(xi)f4(xi) = 0} ⊂ ℙ(1,1,1,3)[x1, x2, x3, w]

(xi, z) 7−→ (xi, l(xi)z)

So the map defined on V0 by the restriction of H is given by 'H(V0) =
g ∘ 'H0(V0), and

W0 = {w2 − l2(xi)f4(xi) = 0} ⊂ ℙ(1,1,1,3)[x1, x2, x3, w].
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