Degenerations Of $\langle 2 \rangle$ -Polarised K3 Surfaces

Alan Thompson

October 22, 2009

This talk is based upon the preprint Degenerations of $\langle 2 \rangle$ -Polarised K3 Surfaces, which is available from the preprints section of my website:

http://people.maths.ox.ac.uk/~thompsona

Full proofs of all results (or references to them) may be found there.

This talk follows on from two talks (*The Construction of Ample* $\langle 2 \rangle$ -*Polarised K3-Fibrations* and *Degenerations of Surfaces with Kodaira Number Zero*) given last year. However, I don't expect people to remember the details, so we will recap them briefly now.

Definition. $A \langle 2 \rangle$ -Polarised K3 Surface (X, H) is a 2-dimensional nonsingular complex algebraic surface X with $K_X \sim 0$ and $b_1(X) = 0$ (a K3 surface), and an ample divisor H on X satisfying $H^2 = 2$

If H is base point free, H defines an isomorphism

$$X \xrightarrow{\sim} X_{6} = \{z^{2} = f_{6}(x_{1}, x_{2}, x_{3})\} \subset \mathbb{P}_{(1,1,1,3)}[x_{1}, x_{2}, x_{3}, z]$$

$$\downarrow^{2:1}$$

$$\mathbb{P}^{2}[x_{1}, x_{2}, x_{3}]$$

exhibiting X as a double cover of \mathbb{P}^2 ramified over a nonsingular sextic curve $f_6(x_1, x_2, x_3) = 0$. *H* is mapped to the pull-back of the hyperplane section in \mathbb{P}^2 under this map. We are interested in studying families of such things.

Let Δ denote a small complex disc. Let $\pi : Y \to \Delta$ be a projective, flat, surjective morphism of normal complex varieties whose general fibres (i.e. fibres over $\Delta^* = \Delta \setminus \{0\}$) are K3 surfaces. Let H be a divisor on Y that induces a base point free $\langle 2 \rangle$ -polarisation on a general fibre.

Then it can be shown that there exists a birational map

$$\mu: Y - \to W \subset \mathbb{P}(1, 1, 1, 3) \times \Delta$$

that is an isomorphism over Δ^* , and such that the morphism $Y_t \to \mathbb{P}(1, 1, 1, 3)$ induced on a general fibre agrees with the morphism defined on Y_t by the polarisation induced by H (that was described above). We want to know what happens to the fibre of Y over 0 when we apply μ to it.

However, in order to be able to do this we will need to make some assumptions on Y. We will assume that:

- Y is semistable, i.e. Y is nonsingular and $Y_0 = \pi^{-1}(0)$ is a reduced divisor with normal crossings. By a theorem of Knudsen-Mumford-Waterman ('73), this can always be arranged by a composition of a base change and a series of birational modifications.
- Y is Kulikov, i.e. $K_Y \sim 0$. By a theorem of Kulikov ('77, '81) and Persson-Pinkham ('81), this can always be arranged by a further series of birational modifications.

The central fibres in such Y have been classified by Persson ('77), Kulikov ('77) and Friedman-Morrison ('83). We make use of this classification when finding the images of these fibres under μ .

So what can the central fibres Y_0 be? There are 4 ways in which the assumptions on the general fibre may fail on Y_0 :

- (I) Y_0 is a smooth K3 surface, H_0 (the divisor induced on Y_0 by H) is base point free but not ample.
- (II) Y_0 is not smooth, but a "Type II" degeneration of K3 surfaces, in the classification mentioned above.
- (III) Y_0 is not smooth, but a "Type III" degeneration of K3 surfaces, in the classification mentioned above.
- (IV) Y_0 is a smooth K3 surface, and H_0 has base points.

We will focus on case (II) in this talk, and see what the effect of μ is on a fibre of this type.

In order to do this, first we need to know what a fibre of Type II looks like. By the classification mentioned before, the central fibre Y_0 in a Type II degeneration of K3 surfaces is a chain $V_0 \cup \cdots \cup V_r$ of surfaces such that:

- $V_i \cap V_{i+1} = D_i$ is a smooth elliptic curve for all *i*.
- $V_i \cap V_j = \emptyset$ if |i j| > 1.
- V_1, \ldots, V_{r-1} are surfaces ruled over D_0, \ldots, D_{r-2} respectively.

• V_0 and V_r are rational surfaces, i.e. birational to \mathbb{P}^2 .

Now we have this, we can proceed with finding the image of such a fibre under μ . In order to do this, we aim to find a "special" divisor H' on Y, equal to H over Δ^* , such that the linear system induced by H' on every fibre of Y defines a birational map to $\mathbb{P}(1, 1, 1, 3)$. Then, by the properness of the Hilbert scheme, H' will define the map μ on Y, and the induced divisor H'_0 on Y_0 will define the restriction of μ to Y_0 . We have the diagram

where our aim is to find W_0 . In order to do this, however, we need to know what this "special" H' is. We have:

Theorem (Friedman '84). There exist integers a_i such that, after a series of birational modifications have been applied to Y, the twisted divisor $H' = H + \sum_{i=0}^{r} a_i V_i$ satisfies:

- 1. H' is numerically effective.
- 2. V_1, \ldots, V_{r-1} are minimal ruled.
- 3. $H'|_{V_i}$ is a sum of fibres for $1 \le i \le r-1$.
- 4. $H'.D_i > 0$ for all *i*.

This H' turns out to be exactly what we are looking for.

Let μ_0 be the map defined on Y_0 by H'_0 (which agrees with the restriction of μ to Y_0). Then properties (2)-(4) above imply that μ_0 contracts V_1, \ldots, V_{r-1} onto $D_0 \cong D_{r-1}$. This leaves us with two rational surfaces V_0 and V_r meeting along an elliptic curve $D := D_0$.

Let $H'_0 := H'|_{V_0}$ and $H'_r := H'|_{V_r}$. Then $(H'_0)^2 + (H'_r)^2 = 2$ and, by (1) in the theorem, $(H'_i)^2 \ge 0$ for each *i*. By Riemann-Roch and adjunction, there are four possibilities:

- 1. H'_i is connected for i = 0, r with $g(H'_0) = g(H'_r) = 0, (H'_0)^2 = (H'_r)^2 = 1$ and $H'_i D = 3$.
- 2. H'_i is connected for i = 0, r with $g(H'_0) = g(H'_r) = 1, (H'_0)^2 = (H'_r)^2 = 1$ and $H'_i D = 1$.

- 3. H'_i is connected for i = 0, r with $g(H'_0) = 1, g(H'_r) = 0, (H'_0)^2 = 2, (H'_r)^2 = 0$ and $H'_i D = 2$.
- 4. H'_0 is connected but $|H'_r|$ has no connected members. $g(H'_0) = 0$, $(H'_0)^2 = 2$, $(H'_1)^2 = 0$ and $H'_i \cdot D = 4$.

We will show by means of an example how to use this information to calculate the image of μ_0 .

Consider case (3) above. We have rational surfaces V_0 and V_r meeting along a smooth elliptic curve D. There are connected divisors H'_0 on V_0 and H'_r on V_r with $g(H'_0) = 1$, $g(H'_r) = 0$, $(H'_0)^2 = 2$, $(H'_r)^2 = 0$ and $H'_i \cdot D = 2$.

By the properties of rational surfaces, we may assume that the linear system $|H'_0|$ has no fixed components or base points, and contains irreducible members. This means that the restriction of μ_0 to V_0 will be a morphism (i.e. no points will be blown up).

By Riemann-Roch, $|H'_0|$ defines a morphism

$$\varphi_{H_0}: V_0 \longrightarrow \{z^2 = f_4(x_i)\} \subset \mathbb{P}_{(1,1,1,2)}[x_1, x_2, x_3, z],$$

where $\{f_4(x_i) = 0\}$ is a quartic in \mathbb{P}^2 with at worst A-D-E singularities. D is mapped to the nonsingular curve $\{l(x_i) = z^2 - f_4(x_i) = 0\}$, where l is linear. This is a double cover of the line $\{l(x_i) = 0\} \subset \mathbb{P}^2$ ramified over four points (i.e. an elliptic curve).

Next we look at V_r . Again, $|H'_r|$ has no fixed components or base points. This time, by Riemann-Roch, $|H'_r|$ defines a morphism

$$\varphi_{H_r}: V_r \longrightarrow \mathbb{P}^1$$

contracting V_r to \mathbb{P}^1 . Under this morphism D is mapped surjectively to \mathbb{P}^1 , and the restriction of φ_{H_r} exhibits D as a double cover of \mathbb{P}^1 ramified over four points.

The contraction of V_r is realised on V_0 by the map:

$$g: \{z^2 - f_4(x_i) = 0\} \longrightarrow \{w^2 - l^2(x_i)f_4(x_i) = 0\} \subset \mathbb{P}_{(1,1,1,3)}[x_1, x_2, x_3, w]$$
$$(x_i, z) \longmapsto (x_i, l(x_i)z)$$

So the map defined on V_0 by the restriction of H is given by $\varphi_H(V_0) = g \circ \varphi_{H_0}(V_0)$, and

$$W_0 = \{w^2 - l^2(x_i)f_4(x_i) = 0\} \subset \mathbb{P}_{(1,1,1,3)}[x_1, x_2, x_3, w].$$