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1 Introduction

Birational equivalence is very much the natural notion of equivalence to use
when studying varieties in algebraic geometry. The topological notions of
homeomorphism and diffeomorphism are too flexible to preserve algebro-
geometric structure, and isomorphism proves too rigid. In the words of Miles
Reid, birational equivalence says that “the meat of the varieties is the same,
although they may differ a bit around the edges”.

In this talk, a surface will refer to a smooth, projective variety of dimen-
sion 2 over the complex numbers (note: Projective implies connected and
irreducible).

2 What is birational equivalence?

In this section, X and Y denote varieties with X irreducible.

Definition 2.1 (B II.4) A rational map � : X− → Y is a morphism from a
(Zariski) open subset U ⊂ X to Y which cannot be extended to a larger open
subset.
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(Note: A morphism is roughly a continuous map that is everywhere
regular - here regularity is defined by composing � with any regular map
f : Y → ℂ, and seeing if this composition defines a regular map. To define
morphisms properly we need the mechanics of schemes, which will not be
covered here, see Hartshorne - Algebraic Geometry).

Definition 2.2 A birational map � : X− → Y is a rational map with ra-
tional inverse.

Unsurprisingly, two varieties are called birationally equivalent if there
exists a birational map between them.

3 The plan of action

There are two sides to the classification:
1) The calculation of birational invariants This allows us to divide

birational equivalence classes of surfaces into a number of broad ”families”,
with similar properties. It is quite a coarse means of classification.

2) The construction of minimal models This attempts to find a
“special” representative from each birational equivalence class of surfaces,
which can then be studied. It is a very fine means of classification.

To be difficult, we’ll start by studying the minimal model side of the
classification:

4 Minimal models

From this point onwards, S will denote a surface.
Denote by B(S) the set of isomorphism classes of surfaces birationally

equivalent to S. B(S) is ordered by domination: We say that Ŝ dominates
S if there exists a birational morphism � : Ŝ → S (i.e. � is defined at all
points of S).

Definition 4.1 (B II.15) A surface S is minimal if its class in B(S) is min-
imal with respect to the domination ordering (i.e. Every birational morphism
� : S → S ′ is an isomorphism).

Our main tool in the construction of minimal models is the operation of
blowing-up:
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Definition 4.2 (B II.1) If S is a surface and p ∈ S, then there exists a
surface Ŝ and a morphism � : Ŝ → S, unique up to isomorphism, such that:

a) The restriction of � to �−1(S − {p}) is an isomorphism onto S − {p}.
b) E = �−1 is isomorphic to ℙ1.

Such a curve E is called an exceptional curve.

Theorem 4.3 (B II.11) Let f : S → S0 be a birational morphism of sur-
faces. Then there exists a (finite) sequence of blow-ups �k : Sk → Sk−1
(1 ≤ k ≤ n) and an isomorphism u : S → Sn such that f = �1∘�2∘⋅ ⋅ ⋅∘�n∘u.

Importantly, this implies that a surface is minimal if and only if it contains
no exceptional curves. This fact, along with the contractibility criterion of
Castelnuovo (B II.17) (which characterises exceptional curves on a surface),
allows us to find a minimal model for any given surface. This proves that a
minimal model for any surface exists.

However, this tells us nothing about whether minimal models are unique!
For this, we require a brief foray into ruled surfaces:

5 Ruled surfaces

Definition 5.1 (B III.1) A surface S is ruled if it is birationally equivalent
to C × ℙ1, for some smooth curve C.

Unfortunately, an example will show us that minimal models of ruled
surfaces are not necessarily unique:

Example 5.2 (B III.24.1) Let S be a minimal ruled surface, p ∈ S a point
of S, and F the fibre of S containing p. Blow-up S at p to obtain a new
surface, Ŝ. Denote the strict transform of F by F̂ . Then F̂ is an exceptional
curve in Ŝ. Blow-down F̂ to obtain a new minimal ruled surface that is not
isomorphic to the first.

However, despite this setback, we can still salvage something from the
situation:

Theorem 5.3 (B V.19) Let S, S ′ be two non-ruled minimal surfaces. Then
every birational map S− → S ′ is an isomorphism

i.e. Every non-ruled surface admits a unique minimal model. So, as long
as we stick to non-ruled surfaces, we need only classify minimal surfaces up
to isomorphism.
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Minimal models provide a good solution to the classification problem, but
we’d like an easier way to gain useful information about the birational equiv-
alence class of a surface without going through the intricacies of calculating
minimal models.

6 Birational invariants

There are a few important numbers that we can define that give us a lot of
information about the birational equivalence class of a surface.

(Note: In what follows, K denotes the canonical divisor, a divisor satis-
fying OS(K) ∼= Ω2

S)

∙ pg(S) = ℎ2(OS) = ℎ0(OS(K)), the geometric genus.

∙ q(S) = ℎ1(OS), the irregularity.

∙ Pn(S) = ℎ0(Os(nK)) (n ≥ 1), the nth plurigenus.

However, the plurigenera are generally difficult to work with (there are
infinitely many of them!). We can simplify matters by instead considering
the Kodaira dimension which, as we shall see, stores a lot of the useful
information carried by the plurigenera in a single value.

Definition 6.1 (B VII.6) The Kodaira dimension of a surface S, denoted
�(S), is defined as:

∙ �(S) = −∞⇔ P12(S) = 0

∙ �(S) = 0⇔ P12(S) = 1

∙ �(S) = 1⇔ P12(S) ≥ 2 and K2 = 0

∙ �(S) = 2⇔ P12(S) ≥ 2 and K2 > 0

There is a much more general definition of the Kodaira dimension for any
smooth projective variety over ℂ, but it is beyond the scope of this talk (B
VII.1).

To conclude this talk, we will examine each value taken by the Kodaira
dimension in turn, to see what we can deduce about the surfaces that take
these values.

�(S) = −∞: This case occurs if and only if S is ruled over some smooth
curve C (This follows from Enriques’ theorem (B VI.17)). We automatically
get the following values for the birational invariants (B III.21):
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∙ q(S) = g(C) (g denotes the usual curve genus)

∙ pg(S) = 0

∙ Pn(S) = 0 for all n ≥ 1

�(S) = 1: (B IX) In this case, we have a useful theorem, courtesy of Iitaka:

Theorem 6.2 (Iitaka fibration) (W 1.1) Let V be a smooth projective va-
riety. If �(V ) ≥ 0, there exists V̂ , birational to V , and a fibration ' : V̂ → W
over a smooth projective variety W such that dim(W ) = �(V ) and �(V̂w) = 0
for the general fibre V̂w.

In our case, this says that any surface S with �(S) = 1 is birational to
a fibration of some smooth curve W by elliptic curves (note: Elliptic curves
have � = 0). Such a surface is called an elliptic surface.

In fact, this theorem is a powerful tool in the classification of general vari-
eties; it effectively reduces the problem of classifying varieties V of dimension
n to that of classifying those with �(V ) = −∞, 0 or n.

�(S) = 0: (B VIII) This is the most interesting case and, in view of Iitaka’s
fibration, the most useful in higher dimensional classification problems. For
this reason, it has been split into several subcases, characterised by the other
invariants.

Note that, for any surface with �(S) = 0, Pn(S) = 0 or 1 for all n, and
there exists at least one N for which PN(S) = 1 (B VII.3).

Theorem 6.3 (B VIII.2) Let S be a minimal surface with �(S) = 0. Then
S belongs to one of the following four cases:

∙ If pg(S) = 0, q(S) = 0, then S is an Enriques surface

∙ If pg(S) = 0, q(S) = 1, then S is a bielliptic surface

∙ If pg(S) = 1, q(S) = 0, then S is a K3 surface

∙ If pg(S) = 1, q(S) = 2, then S is an abelian surface

All of these cases have been studied in great depth, and there is a large
amount known about them.

�(S) = 2: (B X) This is the case of surfaces of general type. They are the
most general of any of the families in the classification, and as such are the
hardest to study. Little is known about them in general, save for certain
bounds on the values that certain of the birational invariants may take.
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