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Abstract

Models for Threefolds Fibred by K3 Surfaces of Degree Two

Alan Matthew Thompson

New College

A thesis submitted for the degree of Doctor of Philosophy, Hilary Term 2011

This thesis focuses on the study of projective models for threefolds that admit fi-

brations by K3 surfaces of degree two.

In Chapter 1 we construct a K3 analogue of the Weierstrass model of an elliptic

fibration, then prove the existence of such a model for any threefold that admits a

fibration by K3 surfaces of degree two.

In Chapter 2 we study the relative log canonical model of a variety that admits a

fibration over a smooth curve. We prove a condition under which this model exists and

use this condition to show that any threefold admitting a semistable fibration by K3

surfaces of degree two has such a model.

In Chapter 3 we study the local form of the relative log canonical model of a threefold

fibred by K3 surfaces of degree two. We find an explicit classification for the semistable

degenerate fibres occurring in such a model, as complete intersections in certain weighted

projective spaces.

In Chapter 4 we show that the relative log canonical model of a semistable three-

fold fibred by K3 surfaces of degree two can be explicitly reconstructed from a certain

easily determined set of data on the base curve. We further prove that, under certain

assumptions, any such set of data determines a threefold that arises as the relative log

canonical model of some threefold fibred by K3 surfaces of degree two.

In Chapter 5 we explicitly calculate several of the geometric properties of the models

that we have found, including the canonical sheaf and coherent Euler characteristic,

and give a necessary and sufficient condition for a certain resolution of the models to

be Calabi-Yau. We further calculate the rank of the second integral cohomology in the

Calabi-Yau case.
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0.1 Introduction

This thesis focuses on the study of projective models for threefolds that admit a fibration

by K3 surfaces of degree two. The nature of the models considered means that they

lend themselves well to explicit study; in particular, it can be shown that they can

be completely reconstructed from a relatively small set of starting data which is easily

determined from the starting threefold. Moreover, this description allows some of the

geometrical properties of the model to be explicitly calculated.

In more detail, a K3 surface is said to have degree two if it admits an ample invertible

sheaf with self-intersection number two. Such surfaces have two equivalent descriptions:

as double covers of the complex projective plane ramified over smooth sextics, or as sex-

tic hypersurfaces in the weighted projective space P(1, 1, 1, 3). A nonsingular threefold

X is said to admit a K3 fibration if there is a projective, flat and surjective morphism

π : X → S to a nonsingular curve S, whose general fibres are K3 surfaces. We say

that X admits a fibration by K3 surfaces of degree two if, furthermore, there exists an

invertible sheaf L on X (called the polarisation sheaf ) whose restriction to a general

fibre of π is ample and has self-intersection number two. The triple (X,π,L) is called a

threefold fibred by K3 surfaces of degree two over S.

We begin our pursuit of models for such threefolds by looking to the well-developed

theory of elliptic fibrations for inspiration. Using the fact that any elliptic curve can be

embedded by an equation of Weierstrass form in P2, Nakayama [Nak88] proves that any

complex variety that admits an elliptic fibration with a section has a birational morphism

to a projective model, called the Weierstrass model. This model is constructed by

defining a P2-bundle over the base variety, then taking a hypersurface in it defined by

an equation of Weierstrass form.

Given a threefold fibred by K3 surfaces of degree two (X,π,L), we attempt to

emulate this construction by defining a P(1, 1, 1, 3)-bundle over our base curve S, then
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0.1. Introduction

mapping X to a sextic hypersurface within it. Unfortunately there turns out to be

a fundamental problem with this method, as a family of K3 surfaces of degree two

can degenerate to a so-called unigonal surface, that does not admit a morphism to

P(1, 1, 1, 3). Thus any unigonal fibres appearing in X cannot be made to map nicely

into our weighted projective bundle. To circumvent this problem we are forced to define

our model only on the open set in S over which the fibres embed into P(1, 1, 1, 3), then to

complete across the gaps using the properness of the Hilbert scheme. This construction

gives us our first model, the K3-Weierstrass model, denoted by W .

The K3-Weierstrass model is simple to construct, depending upon only three pieces

of data on the base curve S, all of which are easily determined from π : X → S and L.

However, the process of “completing across the gaps” means that we cannot guarantee

that we will have a morphism X → W ; instead we will obtain only a birational map

X− → W . Moreover, this birational map destroys the structure of any unigonal fibres

of π : X → S, which makes it difficult to control the singularities appearing in W and

thwarts attempts to calculate its properties.

In order to solve this problem, we turn instead to the theory of fibrations by genus

two curves for inspiration. It is easy to see the parallel between this and our setup when

one notes that a general genus two curve can be seen as a double cover of the projective

line ramified over six points, whereas a K3 surface of degree two can be seen as a double

cover of the projective plane ramified over a smooth sextic curve.

Indeed, in the case of a fibration p : Z → S of a surface by genus two curves, Horikawa

[Hor77] constructs a model that is in many ways analogous to our K3-Weierstrass model,

although using a different method to perform the construction itself. After doing so

he experiences a similar problem to ours: the map to his model is not necessarily a

morphism. This leads to the appearance of highly singular fibres in his models and

makes them difficult to study.

Fortunately for us, Catanese and Pignatelli [CP06] find a way to solve Horikawa’s
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0.1. Introduction

problem. Their solution is to find an explicit method to construct the relative canonical

algebra of Z, defined to be the OS-algebra

R(Z) :=
⊕
n≥0

p∗(ω
⊗n
Z/S),

in terms of a small set of data on S that is easily determined from the fibration p : Z → S.

This can then be used to explicitly construct the relative canonical model of Z, defined

as

Zc := ProjSR(Z).

Given this, standard results of the minimal model program give a birational morphism

Z → Zc and limit the severity of the singularities that can appear in Zc. The majority

of this thesis is dedicated to finding a way to emulate this construction in the case of

a threefold fibred by K3 surfaces of degree two, and to studying the properties of the

resulting models.

In order to do this we begin by finding the correct analogue of the relative canonical

model in our case. The minimal model program suggests that the right notion to take

is the relative log canonical model of the pair (X,L) consisting of the threefold fibred

by K3 surfaces of degree two X and its polarisation sheaf L. This is defined as follows:

first define the relative log canonical algebra of the pair (X,L) to be the OS-algebra

R(X,L) :=
⊕
n≥0

π∗(ω
⊗n
X ⊗ L⊗n).

Then, if it exists, the relative log canonical model of (X,L) is given by

Xc := ProjSR(X,L).

Given this, we first want to prove that the relative log canonical model exists for a
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0.1. Introduction

threefold fibred by K3 surfaces of degree two X with polarisation L. We show that this

will follow from a version of the base point free theorem if L satisfies certain positivity

properties. In order to use this to show existence for general pairs (X,L), we will find

a model π′′ : X ′′ → S for X and a polarisation L′′ on X ′′ making (X ′′, π′′,L′′) into a

threefold fibred by K3 surfaces of degree two, so that L′′ satisfies the relevant positivity

properties and the relative log canonical algebras of the pairs (X,L) and (X ′′,L′′) agree.

Then positivity of L′′ shows that the relative log canonical model of (X ′′,L′′) exists, so

we see that the relative log canonical model of the pair (X,L) must exist also.

In order to construct (X ′′, π′′,L′′) we work locally on S and use techniques from

the birational geometry of degenerations (see [FM83] and [SB83b]). However, these

techniques do not necessarily produce algebraic degenerations, so in order to use them

successfully we find that we first have to extend our definition of a threefold fibred by

K3 surfaces of degree two to cope with cases where the threefold X may be analytic or

mildly singular. Once this has been successfully achieved, we use these techniques to

construct an (X ′′, π′′,L′′) with the desired properties.

With this in place we set out to find a version of Catanese’s and Pignatelli’s con-

struction that works for threefolds fibred by K3 surfaces of degree two. In doing this the

first thing that we note is that Catanese’s and Pignatelli’s construction relies heavily

upon a result of Mendes-Lopes [ML89, Theorem 3.7], which classifies the canonical rings

of degenerate genus two curves. In order to produce a K3 version of their construction,

we first need to prove a version of this result. To do this we embark on a programme

of local study of threefolds fibred by K3 surfaces of degree two.

To perform this study, we once again rely upon results from the birational geometry

of degenerations to give a coarse classification of the semistable fibres that may occur in

a threefold fibred by K3 surfaces of degree two. Using this coarse classification we are

able to explicitly compute the images of these fibres under the map to the relative log

canonical model, as complete intersections in weighted projective space. In particular,
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0.1. Introduction

we note that these images are always contained in one of the weighted projective spaces

P(1, 1, 1, 3) or P(1, 1, 1, 2, 3). This result extends in a non-trivial way prior results of

Friedman [Fri84, Theorem 2.2] and Shah [Sha80, Theorem 2.4], both of whom have

previously studied the explicit form of degenerations of K3 surfaces of degree two.

Using this result we are finally able to find a version of Catanese’s and Pignatelli’s

construction that works for threefolds fibred by K3 surfaces of degree two. We find

that any threefold fibred by K3 surfaces of degree two determines a certain 5-tuple of

data on the base curve S, from which its relative log canonical algebra, and hence its

relative log canonical model, can be explicitly reconstructed. Furthermore, we prove

an analogue of Catanese’s and Pignatelli’s main result [CP06, Theorem 4.13]: we show

that given any 5-tuple of data satisfying certain assumptions, we can find a threefold

fibred by K3 surfaces of degree two that determines that 5-tuple. From this we can see

that the relative log canonical models of threefolds fibred by K3 surfaces of degree two

are completely classified by their associated 5-tuples.

With this in place, the final part of this thesis calculates some of the properties of

these relative log canonical models, in terms of the data coming from their associated 5-

tuples. In particular we are able to calculate expressions for the canonical sheaf, Kodaira

dimension and the coherent Euler characteristic. Furthermore, we give necessary and

sufficient conditions for a certain resolution Y of the singularities of the relative log

canonical model to be a Calabi-Yau threefold, and find an expression for the rank of its

second integral cohomology H2(Y,Z).

We conclude this introduction with a brief overview of the contents of each of the

chapters of this thesis.

In Chapter 1 we begin by giving some background information about K3 surfaces of

degree two and give a formal definition of a threefold fibred by K3 surfaces of degree two.

We then collect together some useful results about weighted projective bundles that will

be used in the rest of the chapter. We conclude the chapter with the construction of
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0.1. Introduction

the K3-Weierstrass model and a result (Theorem 1.3.3) proving that it exists for any

threefold fibred by K3 surfaces of degree two.

Chapter 2 begins with an example illustrating the problems with the K3-Weierstrass

model and discusses why the relative log canonical model is likely to be better. We then

embark on a survey of relevant results from the minimal model program, culminating

in Corollary 2.2.4 and Proposition 2.2.7, which give conditions for the existence of the

relative log canonical model. In the next part of the chapter we give an overview of

some results from the birational geometry of degenerations, before using these in the

final section to prove Theorem 2.4.9, which proves the existence of the relative log

canonical model for a semistable threefold fibred by K3 surfaces of degree two.

In Chapter 3 we embark upon a programme of local study of semistable threefolds

fibred by K3 surfaces of degree two. We begin by discussing the theory of semi log

canonical surface singularities, which will be required in order to state the main result

of the chapter. We then state this result (Theorem 3.2.2), which gives an explicit

description of the degenerate fibres that can occur in the relative log canonical model

of a semistable threefold fibred by K3 surfaces of degree two. The remainder of the

chapter is occupied by a proof of this theorem.

In Chapter 4 we are finally ready to embark upon an explicit construction for the

relative log canonical algebra of a threefold fibred by K3 surfaces of degree two. We

begin with a detailed analysis of the structure of this algebra, then show how this can

be used to reconstruct it from a 5-tuple of data that is easily determined from the

threefold fibred by K3 surfaces of degree two. Finally we prove the main result of this

chapter (Theorem 4.3.2), which shows that, given any 5-tuple of data satisfying certain

conditions, we may find a threefold fibred by K3 surfaces of degree two that determines

that 5-tuple.

Finally, in Chapter 5 we study some of the properties of these relative log canonical

models. Theorem 5.1.1, Corollary 5.1.5 and Theorem 5.2.1 give expressions for the
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0.2. Notational Conventions

canonical sheaf, Kodaira dimension and coherent Euler characteristic of these models

respectively, in terms of the 5-tuples of data that determine them. Next, Theorem 5.3.2

gives a necessary and sufficient condition for a certain resolution Y of these models to

be a Calabi-Yau threefold, again in terms of the 5-tuples of data that determine them.

Finally, if the resolution Y is a Calabi-Yau threefold, Corollary 5.5.3 gives an explicit

formula for the rank of its second integral cohomology group H2(Y,Z).

0.2 Notational Conventions

We will now outline some notational conventions that will be followed in the rest of this

work:

(1) A variety will always refer to an algebraic variety. If we wish to work in the

analytic setting, we will always refer to a complex space or a complex manifold

(the latter of which will always be nonsingular, compact and connected).

(2) A curve (resp. surface) will always be a connected 1-dimensional (resp. 2-

dimensional) variety (or compact complex space).

(3) Let F be a coherent sheaf on a variety (or complex space) X. We let F∨ denote

the dual of F , defined by F∨ := Hom(F ,OX).

(4) Let F be a coherent sheaf on a variety (or compact complex space) X. Then

the rank of the ith cohomology group H i(X,F ) is finite and will be denoted by

hi(X,F ).

(5) Let L be a line bundle on a variety (or compact complex space) X. The notation

Ln will always be reserved for the n-fold tensor power of L (normally denoted

L⊗n). If X is a surface and we wish to refer to the self-intersection number of L,

we will always write L.L.

(6) Let D and D′ be two Weil divisors on a normal variety (or compact complex
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0.2. Notational Conventions

space) X. If D and D′ are linearly equivalent we write D ∼ D′. A divisor D will

be called trivial if D ∼ 0. The group of Weil divisors modulo linear equivalence

on X will be denoted Cl(X).

(7) A Q-divisor on a normal variety (or compact complex space) X is a formal linear

combination of prime Weil divisors
∑

i diDi, with di ∈ Q. A Q-divisor D will be

called Q-Cartier if mD is Cartier for some 0 6= m ∈ Z. Numerical equivalence of

Q-divisors D, D′ will be denoted by D ≡ D′. A Q-divisor D is called numerically

trivial if D ≡ 0.

(8) A Q-divisor D on a normal variety (or compact complex space) X is called nef if

D.C ≥ 0 for all irreducible curves C ⊂ X. If π : X → S is a morphism of varieties

(or compact complex spaces) and D is a Q-divisor on X, then D is called π-nef

if D.C ≥ 0 for all irreducible curves C that are contracted by π.

(9) A line bundle L on a variety (or compact complex space) X of dimension n is

called big if

lim sup
p→∞

p−nh0(X,Lp) > 0.

(10) Let F be a coherent sheaf on a variety (or complex space) X. We call F reflexive

if F∨∨ = F . A reflexive sheaf of rank one will be called divisorial. By the results

of [Rei80, Appendix to §1], if X is a normal variety then divisorial sheaves on X

are in bijective correspondence with elements of Cl(X). In analogy with Cartier

divisors on X, we denote the divisorial sheaf corresponding to a Weil divisor D

by OX(D).

(11) Let D be a Q-divisor on a normal variety (or compact complex space) X and let

f : X− → Y be a birational map. We denote the strict transform of D under f

by f+(D). Note that this can lead to the slightly unusual notation f−1
+ , meaning

“the strict transform under f−1”.
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Chapter 1

Polarised K3-Fibrations and the

K3-Weierstrass Model

1.1 Polarised K3 Surfaces

We begin with some general results about K3 surfaces. First, however, we need to define

them:

Definition 1.1.1. A K3 surface is a nonsingular surface X with trivial canonical class

ωX ∼= OX and vanishing irregularity h1(X,OX) = 0.

Note that this definition does not imply that X is algebraic, but that the hypothesis

h1(X,OX) = 0 implies that X is Kähler [BHPvdV04, Theorem 3.1].

The following result gives some useful information about the birational invariants of

K3 surfaces:

Proposition 1.1.2 [Bea96, Theorem VIII.2]. Let X be a K3 surface. Then X has the

following birational invariants:

• The irregularity q(X) = h1(X,OX) = 0.

• The geometric genus pg(X) = h2(X,OX) = 1.

9



Chapter 1. Polarised K3-Fibrations and the K3-Weierstrass Model

Next we wish to define a polarisation on our K3 surfaces. As we shall see, by fixing

a polarisation we may obtain a lot of information about the structure of our K3 surface.

Definition 1.1.3. Let X be a K3 surface. A polarisation of degree 2d on X is an ample

line bundle L on X with self-intersection number L.L = 2d. If a K3 surface admits a

polarisation of degree 2d, we call it a K3 surface of degree 2d.

We note that, as the polarisation L is assumed to be ample, any K3 surface of degree

2d must be projective.

In this thesis we will restrict ourselves to one of the simplest cases, where d = 1.

The following example shows that these K3 surfaces of degree two can be described

explicitly as hypersurfaces in a certain weighted projective space.

Example 1.1.4 (Hyperelliptic Case). Let X be a K3 surface and let L be an ample

invertible sheaf with self-intersection number L.L = 2 on X. This ample invertible

sheaf determines a natural isomorphism between X and Proj
⊕

n≥0H
0(X,Ln) which,

as we shall see, has the structure of a complete intersection in some weighted projective

space (for more information on weighted projective spaces, see [IF00]). We will find out

which weighted projective space, along with a general form for the equation of X, by

considering the cohomology of Ln for n > 0.

By the Riemann-Roch theorem for surfaces, we have

χ(Ln) = χ(OX) +
1

2
(n2L.L − nL.ωX).

Now, noting that L is ample and ωX ∼= OX , for n > 0

χ(Ln) = h0(X,Ln)− h1(X,Ln) + h2(X,Ln)

= h0(X,Ln)− h1(X,L−n) + h0(X,L−n)

= h0(X,Ln)

10



1.1. Polarised K3 Surfaces

by Serre duality and Kodaira vanishing. Similarly, by Proposition 1.1.2,

χ(OX) = h0(X,OX)− q(X) + pg(X) = 2.

Finally, L.L = 2 by the polarisation information. So we have, for n > 0,

h0(X,Ln) = n2 + 2.

Calculating, we get

h0(X,L) = 3

h0(X,L2) = 6

h0(X,L3) = 11

...

h0(X,L6) = 38

Since h0(X,L) = 3, the linear system of effective divisors defined by L is nonempty.

Let H be a general member of this linear system. We can gather information about the

map defined by L by studying the form of |H|.

In [May72, Proposition 1] Mayer shows that if the linear system |H| has fixed points

then it must have a fixed component. Furthermore as H is ample, by [May72, Propo-

sition 8], if |H| has a fixed component then the general member of |H| has the form

(2E+F ), where F is an irreducible fixed rational curve and E is an elliptic curve. These

components have intersection multiplicities E2 = 0, E.F = 1 and F 2 = −2. But then

H.F = 2E.F + F 2 = 0, contradicting the Kleiman condition for the ampleness of H.

Thus, |H| must be base point free.

Let x1, x2 and x3 be generating sections of H0(X,L). Since |H| is base point free,

11



Chapter 1. Polarised K3-Fibrations and the K3-Weierstrass Model

the sections x2
1, x2

2, x2
3, x1x2, x1x3 and x2x3 will generate H0(X,L2), and the ten degree

3 monomials will be linearly independent in H0(X,L3). As H0(X,L3) is 11-dimensional,

we must introduce a new variable, z, with weight 3. Then, by [May72, Corollary 6],

L3 is very ample, so
⊕

m≥0H
0(X,Lm) is generated in degree 3 and there are no new

variables of higher weight. Continuing upwards, we eventually find that there are 39

degree 6 monomials in the xi and z. But H0(X,L6) is 38-dimensional, so there must be a

relation between these monomials. Thus, X is a hypersurface of degree 6 in P(1, 1, 1, 3).

Conversely, let X be a well-formed quasismooth hypersurface (for definitions, see

[IF00, Section 6]) of degree 6 in P := P(1, 1, 1, 3). By the adjunction formula

OX(KX) = OX(KP)⊗OP(X)|X

= OX(−1− 1− 1− 3)⊗OX(6)

= OX .

So KX ∼ 0. Next consider the exact sequence

0 −→ OP(−X) −→ OP −→ OX −→ 0

This gives rise to the long exact sequence of cohomology

· · · −→ H1(P,OP) −→ H1(X,OX) −→ H2(P,OP(−X)) −→ · · ·

By [IF00, Lemma 7.1], the outer terms in the above sequence vanish, so H1(X,OX) = 0.

Hence, X is a K3 surface.

Now let x1, x2, x3 and z be weighted co-ordinates on P(1, 1, 1, 3). Completing the

square in z and projecting to the space spanned by the xi, we can realise X as a double

cover of unweighted P2 branched over a nonsingular sextic curve. The inverse image

of a hyperplane section of P2 under the covering map is an ample divisor on X with

12



1.1. Polarised K3 Surfaces

self-intersection number 2. Hence, X is a K3 surface of degree two.

Drawing a parallel with the classification of curves of genus two, we say that a

double cover of P2 branched over a (possibly singular) sextic curve is hyperelliptic. By

the argument above, any K3 surface of degree two is hyperelliptic.

Example 1.1.5 (Unigonal Case). For our second example, it will prove useful to

see what happens when we relax some of the assumptions in the definition of a K3

surface of degree two. Specifically, we will study the case where the polarisation is only

pseudo-ample (for full definitions see Dolgachev [Dol96, Section 1]).

In this case X is still a K3 surface, but the polarisation L ∈ Pic(X) may not

necessarily be ample. Instead we assume that L is nef and big. Note that this may

immediately cause a problem, as without an ample invertible sheaf we have no guarantee

that X will be projective. We can solve this problem by noting that L is big so, by

[MM07, Theorem 2.2.15], X is a Moishezon manifold, and that X is also Kähler so, by

[MM07, Theorem 2.2.26], X is projective.

Now, assuming that Ln is generated by its global sections for sufficiently large n,

the invertible sheaf L will determine a birational morphism

X −→ Proj
⊕
n≥0

H0(X,Ln)

that contracts exactly those curves C in X with L.C = 0. We will determine this map

by calculating the cohomology of Ln for n > 0.

By a similar argument to that used in Example 1.1.4 (using the general Kodaira

vanishing theorem [KM98, Theorem 2.70] for nef and big divisors), we once again obtain

h0(X,Ln) = n2 + 2.

Since h0(X,L) = 3, the linear system of effective divisors defined by L is nonempty.

13
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As before, we let H denote a general member of this linear system. The proof of [May72,

Corollary 5] shows that |2H| is base point free, so L2 is generated by its global sections.

By studying the form of |H| we can deduce information about the map defined by L.

By [May72, Proposition 8], H can be written as either

(i) an irreducible curve with H2 = 2, or

(ii) a sum H = (2E+F ), where E is an elliptic curve with E2 = 0 and F is a fixed

rational curve with E.F = 1 and F 2 = −2.

In case (i), |H| is base point free. By an argument analogous to that used in Example

1.1.4, the morphism defined by L takes X to a (possibly singular) sextic hypersurface

in P(1, 1, 1, 3). This morphism contracts exactly those curves C with L.C = 0. By the

Hodge index theorem, any such curve must have C2 < 0 and so, since X is a nonsingular

K3 surface, must be rational with C2 = −2 (by adjunction). Contracting these (−2)-

curves will result in at worst rational double point singularities. Hence, in this case, L

defines a morphism from X to a sextic hypersurface in P(1, 1, 1, 3) that has at worst

rational double point singularities, and we are still in the hyperelliptic case of Example

1.1.4.

In case (ii), as H.F = 0, we may contract F to give a new surface X ′ having an

ordinary double point singularity. The image H ′ of H is still nef and big, but now H ′

is a pair of nonsingular elliptic curves meeting at the singular point of X ′. This point

is the unique base point of the linear system |H ′|.

Let x1, x2 and x3 be sections that generate H0(X ′,OX′(H ′)). By the proof of

[May72, Corollary 5], |2H ′| is base point free, so there must be a quadric relation

between the xi in H0(X ′,OX′(2H ′)). Thus, we need to introduce a new variable, y, in

weight 2. As in Example 1.1.4, we will need yet another new variable, z, in weight 3.

By [May72, Corollary 5], the morphism defined by the linear system |3H ′| is birational

onto its image, so
⊕

n≥0H
0(X,Ln) is generated in degree 3 and there will be no new

14



1.1. Polarised K3 Surfaces

variables of higher weight. Continuing upwards, we find that there will be a degree 6

relation in the xi, y and z.

Thus, |H ′| defines a morphism from X ′ to a complete intersection of bidegree (2, 6)

in P(1, 1, 1, 2, 3), where the degree 2 relation does not involve the degree 2 variable. As

in case (i), the only curves contracted by this morphism will be rational (−2)-curves,

leading to at worst rational double point singularities in the image. So, in case (ii), L

defines a morphism to such a complete intersection.

Note that the complete intersection of bidegree (2, 6) in P(1, 1, 1, 2, 3) as defined

above cannot be seen as a double cover of P2, so we are no longer in the hyperelliptic

case of Example 1.1.4. Instead, this complete intersection can be seen as a double cover

of the quadric cone

{f2(xi) = 0} ⊂ P(1,1,1,2)[x1, x2, x3, y]

ramified over a (possibly singular) sextic curve and the vertex (0 : 0 : 0 : 1) of the

cone. Note that this sextic curve does not pass through the vertex (0 : 0 : 0 : 1), as

the elliptic curves defining the general member of |H ′| must be nonsingular. Drawing

another parallel with the classification of curves of genus 2, we call such a double cover

unigonal.

This example shows that any K3 surface admitting a pseudo-ample line bundle with

self-intersection number two is either hyperelliptic or unigonal. Note that, in fact, both

of these cases can be seen as subcases of the general complete intersection of bidegree

(2, 6) in P(1, 1, 1, 2, 3). Then if the quadric relation involves the degree two variable,

we can use it to eliminate this variable and reduce to the hyperelliptic case of a sextic

hypersurface in P(1, 1, 1, 3). The only time when such a reduction is not possible is in

the unigonal case, when the quadric relation does not involve the degree two variable.

Remark 1.1.6. Here it is convenient to make a few remarks on the moduli space of

polarised K3 surfaces. Whilst this will not be used in the sequel per se, it will provide

15
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us with valuable insight into the deeper theory underlying some results.

By a well-known result of Kodaira, the moduli of all algebraic K3 surfaces are

parametrised by a countable union of 19-dimensional irreducible quasi-projective vari-

eties. The components S2d of the moduli space correspond to the K3 surfaces of degree

2d.

Returning briefly to our example of the K3 surface of degree two, X is given by a sex-

tic equation in P(1, 1, 1, 3). This weighted projective space has 39 monomials of degree

6, so there are 38 independent complex coefficients in the equation for X. However, we

may complete the square in the weight 3 variable to remove 10 of these. Furthermore,

PGL(3,C) acts upon the three weight 1 variables to give 8 further dependence relations

between the monomials. This leaves 20 independent complex coefficients in the defining

equation for X, which define a 19-dimensional projective space. This agrees nicely with

our observation above that the moduli of K3 surfaces of degree two is 19-dimensional.

Finally, as this work will be mainly concerned with constructing explicit models for

threefolds fibred by polarised K3 surfaces, we conclude this section by extending the

definition of a polarised K3 surface to a threefold that admits a fibration by K3 surfaces.

Definition 1.1.7. Let S be a nonsingular complex curve. A threefold fibred by K3

surfaces of degree 2d over S, denoted (X,π,L), consists of:

(1) A three dimensional nonsingular complex variety X;

(2) A projective, flat, surjective morphism π : X → S with connected fibres, whose

general fibres are K3 surfaces;

(3) An invertible sheaf L on X that induces an ample invertible sheaf Ls with

self-intersection number Ls.Ls = 2d on a general fibre Xs of π : X → S.

Remark 1.1.8. In the sequel (Section 2.4) we will extend this definition to encompass

the cases where X is a normal complex variety with mild singularities or a nonsingular
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compact complex manifold. However, before we can do this we will need to develop some

more theoretical tools. We refer the interested reader to Definition 2.4.2 and Definition

2.4.5.

1.2 Weighted Projective Bundles

In Example 1.1.4, we saw that a general K3 surface of degree two can be embedded into

the weighted projective space P(1, 1, 1, 3). If we wish to construct a fibration by K3

surfaces of degree two, it seems sensible to start with a fibration by weighted projective

spaces and then embed our K3 surfaces into the fibres. This leads us naturally to the

concept of a weighted projective bundle. In this section, we aim to construct weighted

projective bundles using a mild generalisation of the method used by Mullet [Mul09,

Section 4], then give a few of their properties that will be used in what follows.

We begin with the definitions:

Definition 1.2.1 [Mul09, 4.1]. Let S be a scheme, and let (a0, . . . , an) be a sequence of

strictly positive integers. Define a weighted locally free sheaf with weights (a0, . . . , an)

to be a locally free sheaf of OS-modules E together with an ordered decomposition of E

as E ∼= E0 ⊕ · · · ⊕ En, where each Ei is a locally free sheaf and the direct sum is to be

interpreted as a graded sheaf with Ei placed in degree ai for 0 ≤ i ≤ n.

This enables us to define:

Definition 1.2.2 [Mul09, 4.3]. Let S be a scheme. Given a weighted locally free sheaf

E with weights (a0, . . . , an), let S̃ym(E) denote the weighted symmetric algebra of E,

where we insist that Ei have homogeneous degree ai in S̃ym(E). We define the weighted

projective bundle associated to E to be the S-scheme

P̃S(E) := ProjS(S̃ym(E))
p−→ S.

17
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The first thing that we wish to show about weighted projective bundles is that the

fibres are indeed the weighted projective spaces that we want. We have:

Lemma 1.2.3 [Mul09, Lemma 4.4]. Let S be a nonsingular variety over C, and let

E ∼= E0 ⊕ · · · ⊕ En be a weighted locally free sheaf on S with weights (a0, . . . , an). Then

the weighted projective bundle P̃S(E) is a locally trivial fibre bundle over S with fibre the

weighted projective space P(a0, . . . , a0, a1, . . . , an−1, an, . . . , an), where ai appears with

multiplicity rank(Ei).

Next, we would like to be able to place a condition on our weighted projective

bundles to ensure that they are well-behaved. This is the analogue of well-formedness

[IF00, 5.11] for a weighted projective space:

Definition 1.2.4. A weighted projective bundle P̃S(E) is well-formed if S is nonsingular

and for all choices of j

hcf(a0, . . . , a0, a1, . . . , aj , âj , aj , . . . , an−1, an, . . . , an) = 1,

where each ai appears with multiplicity rank(Ei) and one of the aj is skipped.

Note that, along with Lemma 1.2.3, this implies immediately that a well-formed

weighted projective bundle is normal and its fibres are well-formed weighted projective

spaces.

Now assume that P̃S(E) is a well-formed weighted projective bundle over a nonsin-

gular complex variety S. Then over any affine open set U ⊂ S, the Proj construction

gives a divisorial sheaf O(1) on p−1(U) = Proj(S̃ym(E)(U)). These divisorial sheaves

glue to give a divisorial sheaf OP̃S(E)(1) on P̃S(E).

For all d ≥ 0, define divisorial sheaves

OP̃S(E)(d) :=
(
OP̃S(E)(1)⊗d

)∨∨
.

18
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Then for any open affine U ⊂ S, the restriction of OP̃S(E)(d) to p−1(U) is exactly O(d).

Using this we see that if l = lcm(a0, . . . , an), then OP̃S(E)(l) is an invertible sheaf on

P̃S(E).

With this in place, we return our attention to the structure of the weighted projective

bundle. We have the following analogue of [Har77, Proposition 7.10]:

Lemma 1.2.5. Let P̃S(E) be a well-formed weighted projective bundle over a nonsingu-

lar complex variety S, with projection map p. Then p is a proper morphism. Further-

more, if we suppose that S admits an ample invertible sheaf, then p must be projective.

Proof. (Based on the proof of [Har77, Proposition 7.10]) We begin by showing that p

is proper. For each affine open set U ⊂ S, the restriction p|U : Proj(S̃ym(E)(U)) → U

is projective, so proper. But the condition of properness is local on the base, so p must

be proper.

Next we show that if S admits an ample invertible sheaf, then p must be projective.

Define a new graded algebra S̃ym(E)(m) by

S̃ym(E)(m) :=
⊕
i≥0

S̃ym(E)im,

where S̃ym(E)d denotes the graded piece of degree d. Then the inclusion of S̃ym(E)(m)

into S̃ym(E) induces an isomorphism

ProjS S̃ym(E) ∼= ProjS
(
S̃ym(E)(m)

)
,

called the m-uple embedding.

Furthermore, if m is divisible by lcm(a0, . . . , an) then S̃ym(E)(m) is generated in

degree one, so we may apply [Har77, Proposition 7.10] to get that p is projective.

Next we would like to know more about the sheaves OP̃S(E)(d) for d ∈ N0. We have

the following analogue of [Har77, Proposition II.7.11]:
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Lemma 1.2.6. Let P̃S(E) be a well-formed weighted projective bundle over a nonsingu-

lar complex variety S. Then

(a) If rank(E) ≥ 2, there is a canonical isomorphism of graded OS-algebras

S̃ym(E) ∼=
⊕
d≥0

p∗
(
OP̃S(E)(d)

)

where the grading on the right hand side is given by d.

(b) There exists a natural morphism of graded OP̃S(E)-algebras

p∗
(
S̃ym(E)

)
−→

⊕
d≥0

OP̃S(E)(d),

which is surjective in degree d if d is divisible by lcm(a0, . . . , an).

Proof. Part (a) is just a rephrasing of [Har77, Proposition II.7.11(a)] in the weighted

setting.

For part (b), taking the inverse image by p of the isomorphism in (a) we get an

isomorphism of graded OP̃S(E)-algebras

p∗
(
S̃ym(E)

) ∼= p∗p∗

(⊕
d≥0

OP̃S(E)(d)
)
.

Composing with the natural morphism

p∗p∗

(⊕
d≥0

OP̃S(E)(d)
)
−→

⊕
d≥0

OP̃S(E)(d)

gives the required morphism.

Finally, the fact that this morphism is surjective in degree d when d is a multiple

of lcm(a0, . . . , an) is a relative version of the fact that the invertible sheaf O(d) on the

weighted projective space P(a0, . . . , an) is generated by its global sections for d divisible
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by lcm(a0, . . . , an).

Using this, in a manner analogous to [Har77, Proposition 7.12] we can find a condi-

tion for a scheme to admit a morphism to P̃S(E):

Proposition 1.2.7. Let P̃S(E) be a well-formed weighted projective bundle over a non-

singular complex variety S. Suppose that π : X → S is a morphism. Let L be an

invertible sheaf on X. Suppose that we have a morphism of graded OX-algebras

π∗(S̃ym(E)) −→
⊕
d≥0

Ld

that is surjective in degree d when d is divisible by l = lcm(a0, . . . , an). Then there exists

a morphism µ : X → P̃S(E) over S satisfying µ∗(OP̃S(E)(l))
∼= Ll.

Proof. Using the notation in the proof of Lemma 1.2.5, we have an isomorphism

ProjS S̃ym(E) ∼= ProjS
(
S̃ym(E)(l)

)
,

given by the l-uple embedding. Furthermore, S̃ym(E)(l) is generated in degree one and

we have a surjective morphism of graded algebras

π∗S̃ym(E)(l) −→
⊕
d≥0

Ldl.

Then an argument similar to that used in the proof of [Har77, Proposition 7.12] gives a

morphism

µ̃ : X −→ ProjS
(
S̃ym(E)(l)

)
satisfying µ̃∗(O(1)) ∼= Ll. Composing with the l-uple embedding gives the result.

Finally, we conclude this section with a weighted analogue of [Har77, Proposition

III.9.8]. This will enable us to extend a flat family of hypersurfaces in a weighted
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projective bundle over a punctured curve to a flat family over the whole curve; we will

need to do this in the construction of our K3-fibrations.

Lemma 1.2.8. Let S be a nonsingular variety of dimension 1 over C, and let P ∈ S

be a closed point. Let E be a weighted locally free sheaf on S, and let X ⊂ P̃S\P (E) be a

closed subscheme which is flat over S \P . Then there exists a unique closed subscheme

X ⊂ P̃S(E), flat over S, whose restriction to P̃S\P (E) is X.

Proof. (Following the proof of [Har77, Proposition III.9.8]). Let X be the scheme-

theoretic closure of X in P̃S(E). By [Har77, Proposition III.9.7], the natural morphism

π : X → S is flat if and only if every associated point x ∈ X maps to the generic point

of S. But the associated points of X are just those of X, so since X is flat over S \ P ,

X is flat over S. Furthermore, X is unique, as any other extension of X to P̃S(E) would

have some associated points mapping to P .

1.3 The K3-Weierstrass Model

We are now ready to begin constructing our first model for K3-fibrations. In order to

do this we look to the well-developed theory of elliptic fibrations for inspiration. Using

the fact that any elliptic curve can be embedded by an equation of Weierstrass form in

P2, Nakayama [Nak88] proves that any complex variety that admits an elliptic fibration

with a section has a birational morphism to a projective model, called the Weierstrass

model. This model is constructed by defining a P2-bundle over the base variety, then

taking a hypersurface in it defined by an equation of Weierstrass form. We attempt to

perform an analogous construction for threefolds fibred by K3 surfaces of degree two,

by embedding a flat family of K3 surfaces of degree two into a P(1, 1, 1, 3)-bundle. We

begin by constructing the weighted projective bundle into which we can embed our

fibration.

Let S be a connected nonsingular 1-dimensional variety over C. Let E1 be a rank
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3 vector bundle and E+
3 a line bundle on S (we make this unusual choice of notation

for consistency with Chapter 4, it will make more sense there!). We treat E1 ⊕ E+
3 as

a weighted locally free sheaf with weights (1, 3) (in the sense of Definition 1.2.2) and

define Y := P̃S(E1 ⊕ E+
3 ). Denote by p : Y → S the natural projection and OY (1) the

tautological divisorial sheaf on Y .

By Lemma 1.2.3, Y is a locally trivial fibre bundle over S with fibre the weighted

projective space P(1, 1, 1, 3). Our next task is to construct a divisor W on Y whose

intersection with a general fibre is a hypersurface of degree 6; then according to Example

1.1.4 these hypersurfaces will be K3 surfaces of degree two, as required.

Unfortunately this will turn out not to be as simple as we would like. The problem

arises because we only know that the polarisation sheaf on a threefold fibred by K3

surfaces of degree two is ample on a general fibre. In practice, this means that there

may exist isolated fibres that are not double covers of P2: for instance, the unigonal

case of Example 1.1.5 may occur. For this reason, we can only explicitly construct W

on a dense open subset of Y . To define W everywhere, we are forced to use the flatness

property to extend W from this dense open set to all of Y .

Consider PS(Sym6(E1)⊕OS). There is an open embedding

Sym6(E1) �
�

// PS
(
Sym6(E1)⊕OS

)
given by v 7→ [v, 1]; we henceforth identify Sym6(E1) with its image under this embed-

ding. Let

a : (E+
3 )2 −→ PS

(
Sym6(E1)⊕OS

)
be a sheaf homomorphism such that im(a) ∩ Sym6(E1) 6= ∅. Then there exists an open

set S0 ⊂ S such that im(a) ⊂ Sym6(E1) on S0. Hence, restricting to S0, we have

a ∈ Γ(S0, (E+
3 )−2 ⊗ Sym6(E1)). Let p0 : Y0 → S0 denote the restriction of p to S0. Let

a′ ∈ Γ(Y0, p
∗
0(E+

3 )−2 ⊗ Sym6(p∗0E1)) denote the inverse image of a under p0.
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Let x and z be the sections of p∗E∨1 ⊗OY (1) and p∗(E+
3 )−1 ⊗OY (3) corresponding

to the natural morphisms

p∗E1 −→ OY (1)

p∗E+
3 −→ OY (3)

given by Lemma 1.2.6. Denote by W
(2)
0 (E1, E+

3 , a) the divisor on Y0 defined by the

equation z2 − a′x6. Then W0 := W
(2)
0 (E1, E+

3 , a) is flat over S0 so, by Lemma 1.2.8,

there exists a unique closed subscheme W (2)(E1, E+
3 , a) ⊂ Y whose restriction to Y0

is W0.

Definition 1.3.1. W (2)(E1, E+
3 , a) is called the degree two K3-Weierstrass model of type

(E1, E+
3 , a) over S.

W := W (2)(E1, E+
3 , a) has the following properties:

(1) W is a normal complex variety and p : W → S is a projective, flat, surjective

morphism whose general fibres are irreducible sextic hypersurfaces in P(1, 1, 1, 3).

(2) The restriction OWs(1) of the divisorial sheaf OW (1) to a general fibre Ws is an

ample invertible sheaf with self-intersection number 2.

(3) The morphisms p∗0E1 → OW0(1) and p∗0E
+
3 → OW0(3) obtained from Lemma 1.2.6

give sections

f ∈ Γ(S0, E∨1 ⊗ p∗OW0(1))

g ∈ Γ(S0, (E+
3 )−1 ⊗ p∗OW0(3)).

(4) Using Lemma 1.2.6, we can identify on S0

p∗OW0(1) = (E1|S0).f
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p∗OW0(2) = Sym2(E1|S0).f2

p∗OW0(3) = Sym3(E1|S0).f3 ⊕ (E+
3 |S0).g

...

p∗OW0(6) = Sym6(E1|S0).f6 ⊕
(
Sym3(E1|S0)⊗ E+

3 |S0

)
.f3g

with the relation

g2 = af6 in Γ(S0, (E+
3 )−2 ⊗ p∗OW0(6)).

Remark 1.3.2. Note that the bundle (E+
3 )−2 ⊗ Sym6(E1) of which a is a section has

rank 28. This seems incongruent with the observation in Section 1.1 that the moduli

space of K3 surfaces of degree two is a 19-dimensional projective variety. However, we

note that PGL(3,C) acts upon P̃S(E1 ⊕ E+
3 ), so that 8 of these dimensions correspond

to linear transformations of the ambient space. Taking this into account, along with

the 1-dimension difference caused by the change from affine to projective space, the

dimensions agree perfectly.

With our construction complete, we would like to prove an analogue of Nakayama’s

theorem on the generality of Weierstrass models [Nak88, Theorem 2.1]; this states that

any elliptic fibration that admits a section has a proper birational morphism to a Weier-

strass model. Unfortunately, the flat extension contained in our construction means that

we cannot guarantee quite as much for our fibrations; rather, we must forgo the proper

morphism of Nakayama’s result in favour of a more general birational map. We have:

Theorem 1.3.3. Let S be a nonsingular curve. Let (X,π,L) be a threefold fibred by

K3 surfaces of degree two over S. Then there exists a degree two K3-Weierstrass model

W := W (2)(E1, E+
3 , a) over S and a birational map µ : X− → W commuting with the

projections to S.
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Furthermore, there exists a dense open subset S0 ⊂ S such that the restriction µ0 of

µ to X0 := π−1(S0) is an isomorphism and µ∗0OW0(1) = L|X0.

Proof. We begin by gathering some information about the direct image sheaves π∗Ln.

These will then be used to define the vector bundles E1 and E+
3 needed to construct our

K3-Weierstrass model. We prove the first result in considerably more generality than

we need, as we will use it again later.

Lemma 1.3.4. Let π : X → S be a proper surjective morphism from a normal complex

variety (or complex manifold) X to a nonsingular curve S. Then if L is a line bundle

on X, the direct image π∗L is a locally free sheaf on S.

Proof. Firstly note that since π is a proper morphism, by a well-known theorem of

Grothendieck (or Grauert in the analytic case), π∗L is coherent for all n ≥ 0. Then

since S is a nonsingular variety of dimension 1, by [Har80, Corollary 1.4 and Proposition

1.6], π∗L is locally free if and only if it is torsion-free.

Now, by definition, the direct image π∗L is torsion-free if and only if the restriction

maps H0(U, π∗L) → H0(U ′, π∗L) are injective for all pairs of open subsets U,U ′ that

satisfy ∅ 6= U ′ ⊂ U ⊂ S. Let U , U ′ be two such open sets. Then, by definition of

the direct image, H0(U, π∗L) ∼= H0(π−1(U),L), and a similar statement holds for U ′.

Furthermore, as π is surjective, ∅ 6= π−1(U ′) ⊂ π−1(U) ⊂ X. Thus, the torsion-freeness

of π∗L follows immediately from the torsion-freeness of L.

Lemma 1.3.5. With assumptions as in Theorem 1.3.3, π∗Ln is a locally free sheaf on

S of rank r(n) for n ≥ 1, where

r(n) = n2 + 2.

Proof. The fact that π∗Ln is locally free follows from Lemma 1.3.4. It only remains to

find the ranks of these locally free sheaves. Let s be a closed point in S, with fibre Xs
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over s a K3 surface of degree two (such points form a dense open set in S). Then, by

[Har77, Exercise II.5.8]

r(n) = dimk(s) π∗(Ln)s ⊗Os k(s)

where k(s) = Os/ms is the residue field at the point s. We will use the theorem on

cohomology and base change [Mum70, Corollary II.5.2] to calculate this dimension.

Let LXs denote the invertible sheaf induced on Xs by L. We note that, as Xs is a

K3-surface, the canonical sheaf ωXs
∼= OX . So the cohomology groups

H1(Xs,LnXs
) ∼= H1(Xs, ωXs ⊗ LnXs

)

are isomorphic. The second of these groups vanishes for n ≥ 1 by Kodaira vanishing,

as LXs is ample.

As a general fibre of π : X → S is a K3 surface of degree two, this vanishing holds

for all s′ in some neighbourhood of s. Furthermore, Ln is flat over S0 so, by the theorem

on cohomology and base change, the map

(π∗Ln)s ⊗Os k(s) −→ H0(Xs,LnXs
)

is an isomorphism. Thus, we have

dimk(s) π∗(Ln)s ⊗Os k(s) = h0(Xs,LnXs
).

But the rank of this cohomology group was calculated in Example 1.1.4. Hence we have

r(n) = n2 + 2.

Our next task is to define the vector bundles E1 and E+
3 needed to construct the
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K3-Weierstrass model. E1 is easy to define,

E1 := π∗L.

By Lemma 1.3.5, E1 is a locally free sheaf on S of rank 3, as required by the construction.

Unfortunately, E+
3 is not quite so simple to define!

Let f ∈ Γ(S, E∨1 ⊗ π∗L) denote the section corresponding to the identity homomor-

phism on π∗L. Then f3 induces a map

f3 : Sym3(E1) −→ π∗L3.

Note that f3 cannot be surjective; by Lemma 1.3.5, Sym3(E1) has rank 10, whereas

π∗L3 has rank 11. We would like to set E+
3 to be the cokernel of this map. However, we

cannot guarantee that the sheaf obtained this way will be locally free. Hence, we are

forced to adopt a more complicated definition.

Let Q := ker(f3) and T3 := coker(f3). Define E+
3 as the reflexivisation of T3,

E+
3 := (T3)∨∨.

Then since E+
3 has rank one and S is nonsingular, by a result of Hartshorne [Har80,

Proposition 1.9], E+
3 is locally free.

These sheaves all fit together in a commutative diagram with exact rows and columns

on S, as shown in Figure 1.1.

We would ideally like to express π∗L3 as a direct sum involving Sym3E1 and E+
3 .

Unfortunately, the sheaves Q, Tors(T3) and R prevent us from doing this. However, we

can partly recover the situation by showing that these sheaves vanish on an open set

of S.

Lemma 1.3.6. There exists a dense open set S0 ⊂ S such that Q|S0 = 0 and T3|S0 is
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0

��

0

��

Q

��

0

��

Tors(T3)

��

0 // Q // Sym3(E1)
f3
//

��

π∗L3 // T3
//

��

0

0 // ker(q) //

��

π∗L3 q
//

��

E+
3

//

��

R // 0

Tors(T3)

��

0 R

��

0 0

Figure 1.1.

locally free of rank one.

Proof. Let S0 be the dense open set of points over which the fibres of π are K3 surfaces

of degree two.

From the commutative diagram above, we have an exact sequence of sheaves on S

Sym3(E1)
f3

−→ π∗L3 −→ T3 −→ 0

Let s ∈ S0 be a closed point. Localising to stalks and tensoring with k(s), we have

Sym3(E1)s ⊗Os k(s)
f3
s−→ (π∗L3)s ⊗Os k(s) −→ (T3)s ⊗Os k(s) −→ 0

By the argument detailed in Lemma 1.3.5, using the theorem on cohomology and base

change, we have for n ≥ 1

(π∗Ln)s ⊗Os k(s) ∼= H0(Xs,Lns ).
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Then, since Xs is a K3 surface of degree two with polarisation Ls ∈ Pic(Xs), by

Example 1.1.4 we have a natural injection

Sym3H0(Xs,Ls) �
�

// H0(Xs,L3
s)

which induces f3
s under the above isomorphism. So for any s ∈ S0, the sequence

0 −→ Sym3(E1)s ⊗Os k(s)
f3
s−→ (π∗L3)s ⊗Os k(s) −→ (T3)s ⊗Os k(s) −→ 0

is exact. Since E1 and π∗L3 are locally free, the dimensions (over k(s)) of the first two

terms in this sequence are constant across all s ∈ S0 [Har77, Exercise II.5.8]. So, by

exactness, the dimension of the last term in the sequence is constant also. Hence, by

[Har77, Exercise II.5.8] again, T3 is locally free on S0. Furthermore, since f3
s is injective

on S0, the kernel Q|S0 = 0. Finally, by the calculation in Lemma 1.3.5,

dimk(s)(T3)s ⊗Os k(s) = 1

on S0. So (T3)|S0 has rank one.

Let S0 ⊂ S be as in the lemma and X0 ⊂ X be its inverse image under π. Since

(T3)|S0 is locally free, T3
∼= (T3)∨∨ on S0, so Tors(T3) and R are supported on the

complement of S0 in S.

Hence, we have the following exact sequence on S0:

0 −→ Sym3(E1)
f3

−→ π∗L3 q−→ E+
3 −→ 0

Our next task is to show that this sequence splits on S0. This will finally give us

the direct sum decomposition of π∗L3 that we desire.

Proposition 1.3.7. Let ϕ : π∗L3⊗(E+
3 )−1 → OS0 be the homomorphism on S0 obtained
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by tensoring (E+
3 )−1 with q : π∗L3 → E+

3 . There is a section g ∈ Γ(S0, (E+
3 )−1 ⊗ π∗L3)

such that:

(i) ϕ(g) = 1;

(ii) There is an expression g2 = af6 in Γ(S0, (E+
3 )−2 ⊗ π∗L6) for some section

a ∈ Γ(S0, (E+
3 )−2 ⊗ Sym6(E1)).

Proof. The proof of this proposition is based upon the argument given by Nakayama in

the proof of [Nak88, Proposition 2.3]. We begin by constructing the section g locally

on S0, then extend to the whole of S0 by showing uniqueness of the local sections.

Let U be an open subset of S0 such that E1|U and E+
3 |U are trivial. Then we can take

a section g ∈ Γ(U, (E+
3 )−1⊗π∗L3) such that ϕ(g) = 1. We have the following equalities:

(π∗L)|U = (E1|U ).f

(π∗L2)|U = Sym2(E1|U ).f2

(π∗L3)|U = Sym3(E1|U ).f3 ⊕ (E+
3 |U ).g

...

(π∗L6)|U = Sym6(E1|U ).f6 ⊕
(
Sym3(E1|U )⊗ E+

3 |U
)
.f3g.

So there exist a ∈ Γ(U, (E+
3 )−2⊗ Sym6(E1)) and b ∈ Γ(U, (E+

3 )−1⊗ Sym3(E1)) such that

g2 = af6 + bf3g. Put

g′ := g − 1

2
bf3.

Then g′2 = af6 for some a ∈ Γ(U, (E+
3 )−2 ⊗ Sym6(E1)). Therefore, a g exists on U that

satisfies the proposition. We will now show that such a g is unique, which will allow us

to patch to give a single global section.

Suppose G ∈ Γ(U, (E+
3 )−1 ⊗ π∗L3) is another section on U satisfying the conditions

of the proposition. Then

G = λf3 + νg
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for some λ ∈ Γ(U, (E+
3 )−1 ⊗ Sym3(E1)) and ν ∈ Γ(U,OU ), and there exists a section

A ∈ Γ(U, (E+
3 )−2 ⊗ Sym6(E1)) such that G2 = Af6. By condition (i) in the proposition,

ν ≡ 1. So we have

G2 = λ2f6 + λf3g + g2

= (λ2 + a)f6 + λf3g

= Af6.

The last equality holds if and only if λ = 0. So G = g, and g is unique. Patching these

g together, we obtain the required global section of S0.

Putting all of this together, we have locally free sheaves E1 and E+
3 on S of ranks one

and three respectively, and sections f ∈ Γ(S0, E∨1 ⊗ π∗L) and g ∈ Γ(S0, (E+
3 )−1 ⊗ π∗L3)

such that on S0:

(π∗L)|S0 = (E1|S0).f

(π∗L2)|S0 = Sym2(E1|S0).f2

(π∗L3)|S0 = Sym3(E1|S0).f3 ⊕ (E+
3 |S0).g

...

(π∗L6)|S0 = Sym6(E1|S0).f6 ⊕
(
Sym3(E1|S0)⊗ E+

3 |S0

)
.f3g.

Furthermore, there exists a section a ∈ Γ(S0, (E+
3 )−2 ⊗ Sym6(E1)) such that

g2 = af6

in Γ(S0, (E+
3 )−2 ⊗ π∗L6).

It follows from the properties of f and g above that the natural homomorphisms

π∗π∗(Ln|X0) → Ln|X0 are surjective for all n > 0. By Proposition 1.2.7 this induces a
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morphism µ0 : X0 −→ P̃S0(E1⊕E+
3 ) that has image W0 := W

(2)
0 (E1, E+

3 , a). Furthermore,

since L|X0 is π-ample, µ0 is birational onto its image and does not contract any curves,

so must be an isomorphism. By construction and the surjectivity of π∗π∗(L|X0)→ L|X0 ,

the inverse image µ∗0OW0(1) = L|X0 . Finally, we may extend µ0 to a birational map

µ : X− →W (2)(E1, E+
3 , a). This completes the proof of Theorem 1.3.3.
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The Relative Log Canonical

Model

2.1 The Relative Log Canonical Model

Whilst the K3-Weierstrass model has several advantages, ultimately it suffers from a

major flaw. This lies in the fact that the map µ : X− →W (2)(E1, E+
3 , a) is not necessarily

a morphism. This makes it difficult to control the singularities appearing in the fibres

of W (2)(E1, E+
3 , a), and thwarts attempts to calculate its properties. To see why this is,

consider the following example:

Example 2.1.1. Let (X,π,L) be a threefold fibred by K3 surfaces of degree two over

a curve S, and suppose that F is a unigonal fibre in X. By Example 1.1.5, F can be

seen as a complete intersection

{z2 − f6(xi, y) = f2(xi) = 0} ⊂ P(1,1,1,2,3)[x1, x2, x3, y, z].

As noted in Example 1.1.5, F cannot be seen as a double cover of P2. So it is

not immediately clear what its image under the map µ : X− → W (2)(E1, E+
3 , a) will
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be. In fact, it will turn out that the restriction of µ to F always agrees with the

natural projection P(1, 1, 1, 2, 3)− → P(1, 1, 1, 3). We will illustrate this fact with a

simple example; the general case follows by a similar, albeit slightly more complicated,

argument.

So consider the following simple K3-fibration: let ∆ denote the open complex unit

disc {t ∈ C : |t| < 1} and let X be the threefold

{z2 − f6(xi, y) = t2y − f2(xi) = 0} ⊂ ∆× P(1,1,1,2,3)[x1, x2, x3, y, z]

with natural projection π : X → ∆. Furthermore, assume that f6 has been chosen such

that the hypersurface

{f6(xi, y) = 0} ⊂ P(1,1,1,2)[x1, x2, x3, y]

does not contain the point (0 :0 :0 :1).

Over a point t in the open set ∆∗ := ∆− {0}, the fibre Xt of π is given by

Xt = {z2 − f6(xi, y) = t2y − f2(xi) = 0} ⊂ P(1,1,1,2,3)[x1, x2, x3, y, z]

with t 6= 0. This is isomorphic to the K3 surface of degree two

{t6z2 − f6(txi, f2(xi)) = 0} ⊂ P(1,1,1,3)[x1, x2, x3, z],

with isomorphism induced by the projection P(1, 1, 1, 2, 3)− → P(1, 1, 1, 3).

The fibre X0 of π : X → ∆ over 0 ∈ ∆ is a complete intersection

X0 = {z2 − f6(xi, y) = f2(xi) = 0} ⊂ P(1,1,1,2,3)[x1, x2, x3, y, z].

As (0:0 :0 :1) /∈ {f6(xi, y) = 0}, by Example 1.1.5, X0 is a unigonal fibre. So π : X → ∆
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is a threefold fibred by K3 surfaces of degree two with a unigonal fibre over 0 ∈ ∆. Let

W ⊂ ∆ × P(1, 1, 1, 3) denote the K3-Weierstrass model of π : X → ∆, with projection

p : W → ∆ and birational map µ : X− →W .

Let X∗ denote the part of X over ∆∗. By Theorem 1.3.3, the restriction of µ to X∗

is an isomorphism. So

µ(X∗) = {t6z2 − f6(txi, f2(xi)) = 0} ⊂ ∆∗ × P(1,1,1,3)[x1, x2, x3, z].

The fibre of p : W → ∆ over 0 ∈ ∆ is obtained by taking the limit of the above fibres

as t→ 0.

As (0 : 0 : 0 : 1) /∈ {f6(xi, y) = 0}, the coefficient of the y3 term in f6 is non-zero.

Hence, the limit of the fibres of µ(X∗) as t→ 0 is the hypersurface

µ(X0) = {(f2(xi))
3 = 0} ⊂ P(1,1,1,3)[x1, x2, x3, z].

This is exactly the image of X0 under the projection P(1, 1, 1, 2, 3)− → P(1, 1, 1, 3).

We note that this fibre is both singular and not reduced (in the terminology of

Section 2.3 we say that p : W → ∆ is not semistable). This leads to bad singularities in

W and makes it very difficult to calculate its properties.

In order to solve this problem we will need to construct a better model. To find such

a model we turn our attention away from elliptic fibrations and instead draw inspiration

from the theory of surfaces fibred by curves of genus two. Whilst this may at first seem

like an unusual route to take, it is actually quite logical. After all, a general curve of

genus two can be expressed as a double cover of P1 ramified over six points or, in other

words, a sextic in P(1, 1, 3). With this description, the parallels with our setup are

immediately apparent.

Indeed, in his paper [Hor77] Horikawa constructs a model for genus two fibrations
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that is in many ways analogous to our K3-Weierstrass model, albeit using a different

method to perform the construction itself. After doing so he experiences the same

problem that we have: the map to his model is not necessarily a morphism. This leads

to the appearance of highly singular fibres in his models, which make them difficult to

work with.

Fortunately for us, Catanese and Pignatelli [CP06] find a way to improve Horikawa’s

model, and in doing so solve many of its problems. Their solution is to consider the

relative canonical model of the genus two fibration and, using its built-in structure, they

are able to find a way to construct it explicitly. In Chapter 4 we will attempt to emulate

this construction for our threefolds fibred by K3 surfaces of degree two.

However, we immediately encounter a problem. If we attempt to define the relative

canonical model in the usual way, using direct images of multiples of the canonical

divisor KX , the model we obtain will be of little practical use. This happens because

the canonical divisor vanishes on the general fibres of our K3-fibration, so these fibres

will be contracted when we proceed to the relative canonical model. To avoid this

problem, rather than focusing our attention on the canonical divisor KX , it will instead

be beneficial to study a small perturbation (KX +H) for a suitably defined divisor H.

This will give rise to a much better model, the relative log canonical model.

Fortunately for us, the study of varieties with slightly perturbed canonical classes

is well developed. Indeed, such structures are thought to form the natural setting for

running the higher dimensional minimal model program. The remainder of this section

will be concerned with outlining some of the basic definitions and results from this

theory that will be used in the coming chapters. Everything in this section may be

found in more detail in [KM98].

We begin by defining the canonical sheaf for a normal variety X. Note that as such a

space may be singular in codimension 2, the usual definition of ωX as
∧n ΩX/C may give

a sheaf that is not even reflexive, let alone locally free. Instead, following [Rei87, (1.5)],
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we define ωX := j∗(
∧n ΩX0/C), where j : X0 ↪→ X denotes the inclusion of the smooth

locus X0 into X. By the results of [Rei87, 1.5], this sheaf is divisorial and equal to the

reflexivisation (
∧n ΩX/C)∨∨. Thus ωX corresponds to a Weil divisor on X, which will

henceforth be called KX . We say that X is Gorenstein if X is Cohen-Macaulay and ωX

is locally free.

We can now define of the basic objects of our study:

Definition 2.1.2 [KM98, 2.25]. A log pair (X,H) is a pair consisting of a normal

variety X and a Q-divisor H on X, such that m(KX +H) is Cartier for some m > 0.

Let (X,H) be a log pair. We would like to be able to talk about how singular (X,H)

is. In order to do this we will consider different resolutions of the singularities of (X,H).

Suppose that f : Y → X is a birational morphism from a normal variety Y . Let

Ex(f) ⊂ Y denote the exceptional locus of f and Ei ⊂ Ex(f) the irreducible exceptional

divisors. Then, by [KM98, 2.25], there exist rational numbers a(Ei, X,H) such that

m · a(Ei, X,H) are integers and

OY
(
m(KY + f−1

+ H)
) ∼= f∗OX

(
m(KX +H)

)
⊗OY

(∑
i

(
m · a(Ei, X,H)

)
Ei

)
.

It is important to note here that the numbers a(Ei, X,H) do not depend upon the

particular choice of morphism f : Y → X.

Definition 2.1.3 [KM98, 2.28]. a(E,X,H) is called the discrepancy of E with respect

to (X,H). The discrepancy of the pair (X,H) is given by

discrep(X,H) := inf
E
{a(E,X,H) : E is an exceptional divisor over X},

where this infimum is taken over all the exceptional divisors E of all the birational

morphisms f : Y → X.

Note that we can extend the definition of discrepancy to encompass other irreducible
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divisors E ⊂ X. If H =
∑

i aiHi for irreducible divisors Hi, we define a(Hi, X,H) = −ai

and a(E,X,H) = 0 for any irreducible divisor E ⊂ X that is different from the Hi.

Using this and the notion of numerical equivalence of Q-divisors, for f : Y → X as above

we may write

KY + f−1
+ H ≡ f∗(KX +H) +

∑
Ei exceptional

a(Ei, X,H)Ei, or

KY ≡ f∗(KX +H) +
∑

Ei arbitrary

a(Ei, X,H)Ei

The discrepancy provides us with a way to “measure” how singular the pair (X,H)

is. We have the following definition:

Definition 2.1.4 [KM98, 2.34]. The pair (X,H) is called

terminal

canonical

log canonical

 if discrep(X,H)


> 0,

≥ 0,

≥ −1.

If H = 0 we say simply that X has terminal (resp. canonical, log canonical) singulari-

ties.

This theory would be of little use if we could not explicitly calculate the discrepancy

of a given pair (X,H). Fortunately, the following result will help us out:

Proposition 2.1.5 [KM98, Corollary 2.31]. Let (X,H) be a log pair and write H as

a sum H =
∑
aiHi of irreducible divisors Hi. Assume that X is smooth,

∑
Hi has

simple normal crossings and ai ≤ 1 for every i. Then

discrep(X,H) = min
{

min
i 6=j

Hi∩Hj 6= ∅

{1− ai − aj},min
i
{1− ai}, 1

}
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With this in place we are ready to define the relative log canonical model for log

pairs.

Definition 2.1.6 [KM98, 3.50]. Let (X,H) be a log pair and π : X → S be a proper

morphism to a normal variety S. A pair (Xc, Hc) sitting in a diagram

X

π
��

φ
// Xc

πc
~~

S

is called a relative log canonical model of (X,H) over S if:

(1) πc is proper,

(2) φ−1 has no exceptional divisors,

(3) Hc = φ+H,

(4) KXc +Hc is πc-ample, and

(5) a(E,X,H) ≤ a(E,Xc, Hc) for every φ-exceptional divisor E ⊂ X.

Unfortunately, given a log pair (X,H), this definition does not guarantee that a

relative log canonical model for (X,H) exists. The next section will be devoted to

proving that one does under certain assumptions on (X,H).

Remark 2.1.7. All of the results in this section continue to hold in the case where X

is a normal complex analytic space. The only place where we have to be careful is when

we refer to “the canonical divisor KX”, as this may not be well-defined for a normal

complex analytic space. However, as we really only use the linear equivalence class of

KX we can safely reformulate everything in terms of the canonical sheaf ωX instead,

which is well-defined for normal complex analytic spaces. See [KM98, Sections 2.2 and

3.8] for full details.
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2.2 Existence of the Relative Log Canonical Model

The aim of this section is to provide a set of conditions on a log pair (X,H) admitting

a proper morphism π : X → S to a normal variety S that will ensure the existence of a

relative log canonical model for (X,H) over S. We begin with a result that will prove

central to this endeavour:

Proposition 2.2.1. Let (X,H) be a pair consisting of a nonsingular complex variety

(or complex manifold) X and a divisor H on X, and let π : X → S be a proper morphism

to a nonsingular variety (or complex manifold) S. Suppose that

R(X,H) :=
⊕
n≥0

π∗OX(nKX + nH)

is a sheaf of locally finitely generated OS-algebras and that

dim ProjSR(X,H) = dimX.

Then the natural map φ : X− → ProjSR(X,H) is birational and the exceptional set

Ex(φ−1) has codimension at least 2 in ProjSR(X,H).

Remark 2.2.2. Whilst this result is certainly well-known (for example, see [Kol08,

Exercises 113 and 114]), we have been unable to find a satisfactory proof in the literature.

A proof is included here for completeness.

Proof. We note first that, as φ preserves the fibration structure, the question is local in

the base S. With this in mind, let U ⊂ S be an affine open set (or Stein space), and let

XU := π−1(U) be the open set in X above U . Let ψ : ProjSR(X,H) → S denote the

natural morphism. By definition of the Proj construction and properties of the direct
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image, the open set ψ−1(U) ⊂ ProjSR(X,H) is given by

ψ−1(U) = Proj
(
H0(U,R(X,H)|U )

)
= Proj

(⊕
n≥0

H0(XU ,OXU
(nKX + nH))

)
.

With this in place, we use an argument based upon that in [BHPvdV04, Section

VII.5] to show that we may assume that the algebra

R(U) :=
⊕
n≥0

H0(XU ,OXU
(nKX + nH))

is generated in degree one. We begin by noting that as R(X,H) is locally finitely

generated, R(U) is finitely generated, so there exists an integer m0 such that R(U) is

generated in degree m0. Then for any integer m, by the m-uple embedding, the subring

R(m)(U) :=
⊕
n≥0

H0(XU ,OXU
(mnKX +mnH))

defines a projective variety ProjR(m)(U) that is isomorphic to ProjR(U), with isomor-

phism induced by the inclusion R(m)(U) ⊂ R(U).

Next, define R[m](U) to be the subring of R(m)(U) generated by the sections in

H0(XU ,OXU
(mKX + mH)). Since R(U) is generated in degree m0, if m ≥ m0 then

R[m](U) ∼= R(m)(U). So the log pluricanonical map

φm : XU− → ProjR[m](U)

defined by the linear system |mKX+mH| has image isomorphic to ProjR(U) ifm ≥ m0.

Putting all of this together, without loss of generality we may assume that we are in

the following situation: π : X → U is a proper morphism from a connected nonsingular

complex space X to a nonsingular affine variety (or Stein space) U . Choose m ≥ m0,
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so that the graded algebra

R(m)(X,H) :=
⊕
n≥0

H0(X,OX(mnKX +mnH))

is generated in degree one. We wish to show that the map

φm : X− → Z := ProjR(m)(X,H)

defined by the linear system |mKX + mH| is birational and that the exceptional set

Ex(φ−1
m ) has codimension at least 2 in Z.

Let f : X̃ → X denote the blow up of the base points of |mKX + mH| and let

H̃ = f∗(mKX + mH). Write |H̃| = |M | + F , where F is the fixed locus and |M | has

no base points or fixed components. Then consider the morphism

g : X̃ −→ Z̃ := Proj
(⊕
n≥0

H0(X̃,OX̃(nM))
)

defined by the linear system |M |. We aim to show that Z̃ ∼= Z.

For any n ≥ 0 we have an exact sequence

0 −→ OX̃(nM) −→ OX̃(nH̃) −→ OnF (nH̃) −→ 0

which gives rise to an inclusion of cohomology groups

H0(X̃,OX̃(nM)) �
�

// H0(X̃,OX̃(nH̃)) .

Furthermore, since |H̃| = |M |+ F and F is fixed, every section of OX̃(nH̃) arises from

a section of OX̃(nM), so this map is an isomorphism. Next, by the Leray spectral
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sequence, we have an isomorphism

H0(X̃,OX̃(nH̃)) ∼= H0(X, f∗OX̃(nH̃)).

Finally, as f is surjective and has connected fibres, f∗OX̃ = OX and so by the projection

formula

f∗OX̃(nH̃) ∼= OX(nmKX + nmH).

Putting all of this together, for any n ≥ 0 we get an isomorphism of cohomology

groups

H0(X̃,OX̃(nM)) ∼= H0(X,OX(nmKX + nmH)) (2.1)

that induces an isomorphism Z̃ ∼= Z. Furthermore, the morphism g agrees with the

composition φm ◦ f , so the diagram

X̃

f
��

g

��

X
φm
// Z

commutes. This reduces our problem to one of showing that g is birational and contracts

the exceptional set Ex(f) ⊂ X̃ to a codimension 2 subset in Z.

Remark 2.2.3. Note that this part of the proof also shows that if the linear system

|mKX +mH| is base point free for m ≥ m0, the map φm is a morphism over the open

set U . This will prove to be useful to us later.

We begin by showing that g is birational. Using the assumption that dimX = dimZ,

Stein factorisation [Uen75, Theorem 1.9] gives that g is generically finite. Then by

[Uen75, Corollary 5.8] we have that, for a suitably large choice of m, the general fibre of

the morphism g is connected. So the general fibre of the morphism g must be a point,

and thus g is birational.
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In order to show that g contracts the exceptional set of f , we begin by showing that

all of the exceptional divisors in Ex(f) appear in the fixed part F of the linear system

|H̃|. In order to show this, first consider the (not necessarily complete) linear system

f∗|mKX+mH| given by pulling-back the members of the linear system |mKX+mH| by

f . As f is the blow up of the base points of |mKX+mH|, any member of f∗|mKX+mH|

contains all of the divisors in the exceptional locus Ex(f). So these exceptional divisors

are all contained in the fixed part of f∗|mKX +mH|.

Next, note that we have an inclusion f∗|mKX + mH| ⊂ |H̃|. Using this and the

analysis of f∗|mKX +mH| above, we see that in order to show that all of the divisors

in Ex(f) appear in F , it suffices to show that this inclusion is actually an equality. To

see this, note first that the inclusion f∗|mKX +mH| ⊂ |H̃| corresponds to an inclusion

in cohomology

H0(X,OX(mKX +mH)) ⊂ H0(X̃,OX̃(H̃)).

But, by (2.1) above, these cohomology groups are in fact isomorphic. So we have

f∗|mKX +mH| = |H̃| and all of the exceptional divisors in Ex(f) appear in F .

With this in place, to complete the proof of Proposition 2.2.1 it suffices to show that

g contracts the fixed locus F of the linear system |H̃| to a codimension 2 subset in Z.

We base our argument on that used by Reid in the proof of [Rei80, Lemma 1.6].

Let E be a component of F . For any n ≥ 0 we have the exact sequence

0 −→ OX̃(nM) −→ OX̃(nM + E) −→ OE(nM + E) −→ 0.

In the corresponding long exact sequence of cohomology, the map

H0(X̃,OX̃(nM)) −→ H0(X̃,OX̃(nM + E))

is an isomorphism, as E is fixed in the linear system |nM + E|. Using this, from the

45



Chapter 2. The Relative Log Canonical Model

long exact sequence of cohomology we get

0 −→ H0(E,OE(nM + E)) −→ H1(X̃,OX̃(nM)) −→ · · · .

Our strategy then becomes clear. If we can show that h1(X̃,OX̃(nM)), and with it

h0(E,OE(nM +E)), is bounded above by (const.)ndimZ−2 for sufficiently large n, then

dim(g(E)) ≤ dimZ − 2 and E will be contracted by g.

To show that h1(X̃,OX̃(nM)) ≤ (const.)ndimZ−2, we consider the Leray spectral

sequence for g:

0 −→ H1(Z, g∗OX̃(nM)) −→ H1(X̃,OX̃(nM)) −→ H0(Z,R1g∗OX̃(nM)) −→ · · · .

As g is the morphism corresponding to the linear system |M |, for each n ≥ 0 the direct

image g∗OX̃(nM) is isomorphic to OZ(n). So, by Serre vanishing [Har77, Theorem

III.5.2] [BS76, Theorem IV.2.1], we have H1(Z, g∗OX̃(nM)) = 0 for sufficiently large n.

Finally, as X̃ is irreducible and g is a birational morphism, g is an isomorphism outside

of a codimension 2 subset of Z, and so R1g∗OX̃(nM) is supported in codimension ≥ 2.

Thus, h0(Z,R1g∗OX̃(nM)) ≤ (const.)ndimZ−2 for sufficiently large n and so, by the

sequence above h1(X̃,OX̃(nM)) ≤ (const.)ndimZ−2.

This completes the proof of Proposition 2.2.1.

With this in place, we have the following corollary:

Corollary 2.2.4. Let (X,H) and π : X → S satisfy the conditions of Proposition 2.2.1.

Then

(Xc, Hc) :=
(
ProjSR(X,H), φ+H

)
is a relative log canonical model of (X,H) over S.

Proof. By Proposition 2.2.1, conditions (1) and (2) in the definition of the relative log
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canonical model are satisfied by (Xc, Hc). Furthermore, condition (3) is satisfied by

construction and condition (4) follows from the properties of the Proj construction.

Thus, we only have to check condition (5): that a(E,X,H) ≤ a(E,Xc, Hc) for any

φ-exceptional divisor E ⊂ X.

In order to prove this, we use an argument based upon that used to prove [KM98,

Lemma 3.38]. Let Z be a normal variety with birational morphisms f : Z → X and

g : Z → Xc, such that the diagram

Z
f

~~

g

  

X
φ

//

π
  

Xc

πc
~~

S

commutes. Then for suitable m > 0 we have

mKZ ∼ f∗(mKX +mH) +
∑
i

(
m · a(Ei, X,H)

)
Ei,

mKZ ∼ g∗(mKXc +mHc) +
∑
i

(
m · a(Ei, X

c, Hc)
)
Ei,

where the sums run over all divisors Ei ⊂ Z. Dividing by m and subtracting we obtain

a Q-divisor

B :=
∑
i

(
a(Ei, X

c, Hc)− a(Ei, X,H)
)
Ei ≡ f∗(KX +H)− g∗(KXc +Hc).

Now, g∗(KXc + Hc) is g-nef and f∗(KX + H).C ≤ 0 for all curves C contracted

by g. So −B is g-nef. Moreover, as φ+H = Hc, the irreducible components of B

must be g-exceptional. Thus, by [KM98, Lemma 3.39], B must be effective and so

a(Ei, X
c, Hc)−a(Ei, X,H) ≥ 0 for all divisors Ei ⊂ Z. In particular, this must be true

for any φ-exceptional divisor E ⊂ X.
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In light of this result, the algebra R(X,H) will henceforth be called the relative log

canonical algebra of the pair (X,H).

Now that we know when a relative log canonical model of (X,H) over S exists, the

next theorem shows that, under certain assumptions on the singularities of (X,H), it

is unique:

Theorem 2.2.5 [KM98, Theorem 3.52]. Let (X,H) be a log canonical pair admitting

a proper morphism π : X → S to a normal variety S. Then, if one exists, a relative log

canonical model (Xc, Hc) of (X,H) over S is unique and

(Xc, Hc) :=
(
ProjSR(X,H), φ+H

)
.

Remark 2.2.6. Note that as the relative log canonical algebra depends only upon the

sheaves OX(nKX + nH), the relative log canonical model defined by this algebra is

independent of the divisor H chosen from within its linear equivalence class. Thus we

may safely refer to the relative canonical model of the pair (X,L), where L is a line

bundle on the complex manifold X. Note, however, that we must be careful when

referring to the discrepancy in this situation, as it is not necessarily constant across

the divisors of a linear system (in fact it is lower semicontinuous, see [KM98, Corollary

2.33]).

By Corollary 2.2.4, in order to show that the relative log canonical model of a pair

(X,H) exists we need to prove that the relative log canonical algebra R(X,H) is locally

finitely generated. This will follow from a version of the base point free theorem, first

proved by Ancona [Anc87, Theorem 3.3].

Proposition 2.2.7. Let π : X → S be a proper surjective morphism from a complex

manifold X to a nonsingular curve S. Let L be a line bundle on X that satisfies:

(i) L is π-nef;
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2.2. Existence of the Relative Log Canonical Model

(ii) ωX + L is π-nef; and

(iii) there exists a dense open subset S0 ⊂ S such that for any s ∈ S0, the restriction

L|Xs of L to the fibre Xs over s is big for s ∈ S0.

Then the relative log canonical algebra R(X,L) :=
⊕∞

m=0 π∗(ω
m
X ⊗Lm) is locally finitely

generated as an OS-algebra and the natural map φ : X → ProjSR(X,L) is a morphism.

Proof. This proof is based upon the arguments used to prove [KM98, Theorem 3.11]

and [KMM87, Theorem 3.3.1].

By [Anc87, Theorem 3.3], under the assumptions of the proposition there exists a

positive integer m0 such that, for any m ≥ m0, the natural map

π∗π∗(ω
m
X ⊗ Lm) −→ ωmX ⊗ Lm (2.2)

is surjective.

We first use this to show thatR(X,L) is locally finitely generated. Suppose m ≥ m0.

Let φm : X → P := PS(π∗(ω
m
X⊗Lm)) be the morphism associated to the surjection (2.2),

and let π′ : P→ S denote the natural projection. Then φ∗mOP(1) ∼= ωmX ⊗Lm and, using

the projection formula

π∗
(
(ωX ⊗ L)jm+r

) ∼= π′∗ ◦ (φm)∗
(
(ωX ⊗ L)jm+r

)
∼= π′∗

(
OP(j)⊗ (φm)∗(ω

r
X ⊗ Lr)

)
.

As OP(1) is π′-ample, RP :=
⊕∞

j=0 π
′
∗OP(j) is a locally finitely generated OS-algebra

and
∞⊕
j=0

π′∗
(
OP(j)⊗ (φm)∗(ω

r
X ⊗ Lr)

)
is a locally finitely generated RP-module for every 0 ≤ r < m. Thus, R(X,L) is a

locally finitely generated OS-algebra.
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We conclude by showing that the map φ is a morphism over a neighbourhood of any

point s ∈ S. Note that, by Lemma 1.3.4, the sheaf π∗(ω
m
X ⊗Lm) is locally free on S, so

we may find an affine neighbourhood U ⊂ S of s such that (π∗(ω
m
X⊗Lm))|U is a free OU -

module. Then for m ≥ m0, the surjection (2.2) gives that (ωmX⊗Lm)|π−1(U) is generated

by its global sections. But then the proof of Proposition 2.2.1 gives immediately that φ

is a morphism (see Remark 2.2.3).

With this result in place, we are almost ready to begin studying the relative log

canonical models of our threefolds fibred by K3 surfaces of degree two. However, before

we can do this we need to check that they exist. This will follow from Corollary 2.2.4 and

Proposition 2.2.7 if we can show that the conditions of these two theorems are satisfied.

In order to do this, we will use techniques from the birational geometry of degenerations.

These techniques, along with several others that will be used in subsequent chapters,

will be outlined in the next section.

2.3 An Introduction to Degenerations

In this section, the object of our study will be a proper, flat, surjective morphism

π : X −→ ∆ := {z ∈ C : 0 ≤ |z| < 1},

whose general fibre Xt := π−1(t) for t ∈ ∆∗ := ∆ − {0} is a nonsingular K3 surface.

Such an object is called a degeneration of K3 surfaces. Note that this definition does

not assume that X is algebraic.

We will be interested in studying the properties of the central fibre X0 = π−1(0). At

present, this interest only extends as far as the numerical properties of the interaction

between this fibre and the polarisation divisor. However, in later chapters we will also

be interested in its underlying structure. In order to perform this study, we first wish
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to find a “nice” model for the degeneration, whose central fibre has certain desirable

properties.

Our point of departure will be the semistable reduction theorem. However, in order

to state it we need to introduce the operation of base change of order m. Let π : X → ∆

be a degeneration of K3 surfaces. Then the degeneration π′ : X ′ → ∆ obtained from π

by base change of order m is defined by the pull-back:

X ′ //

π′

��

X

π
��

∆
σ // ∆

where the map σ is defined by:

σ : t 7−→ tm.

We can now state the semistable reduction theorem, first proved by Knudsen, Mum-

ford and Waterman:

Theorem 2.3.1 (Semistable Reduction) [KKMSD73]. Given π : X → ∆, there ex-

ists an m such that, if π′ : X ′ → ∆ is the base change of order m, there is a bira-

tional morphism Y → X ′ so that ρ : Y → ∆ is semistable, i.e. Y is nonsingular and

Y0 = ρ−1(0) is a reduced divisor with normal crossings.

Y //

ρ

��

X ′ //

π′

��

X

π
��

∆ ∆ // ∆

Thus, by performing a base change and some birational modifications, we may as-

sume that our central fibre X0 is semistable. This already gives us quite a lot of

information. Write X0 =
⋃
Vi, where the Vi are the irreducible components of X0 and

we assume that the Vi have been normalised. Let Dij := Vi ∩ Vj , where if i and j are

equal this denotes the preimage of the self-intersection locus under the normalisation
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map; such Dij are called double curves. The double locus of X0 is defined to be the

union of the double curves D :=
⋃
Dij and coincides with the singular locus of X0.

Finally, a triple point is defined to be any point in D where three of the Vi intersect.

Then, if π : X → ∆ is semistable, we have the classically known triple point formula:

(Dij |Vi)2 + (Dij |Vj )2 = −Tij

where Tij is the number of triple points lying on the component Dij of D.

Whilst this is all well and good, we can do even better! After all, we have yet

to use the the fact that the generic fibre in our degeneration is a K3 surface. With

this in mind we have the following theorem, courtesy of Kulikov [Kul77] [Kul81] and

Persson-Pinkham [PP81]:

Theorem 2.3.2. If π : X → ∆ is semistable with ωXt
∼= OXt for all t ∈ ∆∗, and if all

components of X0 are Kähler, then there exists a birational modification X ′ of X such

that π′ : X ′ → ∆ is semistable, isomorphic to X over ∆∗ and has ωX′ ∼= OX .

Motivated by this theorem, we define a Kulikov model to be a semistable degenera-

tion of K3 surfaces π : X → ∆ with ωX ∼= OX .

Remark 2.3.3. The construction of the Kulikov model given by Persson and Pinkham

is very non-algebraic in nature, involving the contraction of components of the central

fibre that are only “generically contractible”. This means that even if X is algebraic,

we cannot guarantee that its Kulikov model will be. We know only that the Kulikov

model is complex analytic, and that the components of its central fibre are Kähler. See

[PP81] for full details.

Kulikov models have enough structure that it is possible to completely classify their

central fibres. This has been done by Persson [Per77], Kulikov [Kul77] and Friedman-

Morrison [FM83]. However in order to state their result we first need to introduce the

dual graph of the central fibre of a degeneration:
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Definition 2.3.4. Let X0 =
⋃
Vi be the central fibre in a semistable degeneration.

Define the dual graph Γ of X0 as follows: Γ is a simplicial complex whose vertices

P1, . . . , Pr correspond to the components V1, . . . , Vr of X0; the k-simplex 〈Pi0 , . . . , Pik〉

belongs to Γ if and only if Vi0 ∩ · · · ∩ Vik 6= ∅.

This enables us to state:

Theorem 2.3.5 (Classification of Kulikov models). Let π : X → ∆ be a semistable

degeneration of K3 surfaces with ωX ∼= OX , such that all components of X0 are Kähler.

Then either

(I) X0 is a smooth K3 surface;

(II) X0 is a chain of elliptic ruled components with rational surfaces at each end,

and all double curves are smooth elliptic curves;

(III) X0 consists of rational surfaces meeting along rational curves which form

cycles in each component. If Γ is the dual graph of X0, then |Γ|, the topological

support of Γ, is homeomorphic to the sphere S2.

A Kulikov model of a degeneration of K3 surfaces will be referred to as a degeneration

of Type I, II or III, depending upon which case of the theorem it satisfies.

Unfortunately Kulikov models of degenerations are not unique. Examples of this

are provided by the elementary modifications of Types 0, I and II [FM83], which map

a given Kulikov model to a birationally equivalent one. We briefly review these here, as

they will turn out to be important tools in subsequent chapters.

Elementary Modifications of Type 0. Suppose that C ⊂ X0 is a smooth rational

curve of self-intersection (−2) which does not meet the double locus of X0. The curve

C can be contracted on X0 to give a surface X0 with an ordinary double point, and this
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D

−1
C

Blow up C

D

−1
0

−1
0

E

Contract E

D

−1

Figure 2.1: Elementary Modification of Type I.

contraction is induced by a birational modification with X singular:

X //

��

X

��

∆ ∆

We say that C extends to Xt if Xt has an ordinary double point for all t ∈ ∆∗. If C

does not extend to Xt, then the singular space X has a second, distinct resolution X ′:

X

��

// X ′

~~

X

In this case we call C a (§)-curve, and the induced birational map X− → X ′ is the

elementary modification of Type 0 along C.

Elementary Modifications of Type I. Suppose that C ⊂ X0 is a smooth rational

curve of self-intersection (−1), meeting a double curve D in one point; we call such C

a (†)-curve. Begin by blowing up C in X. The exceptional divisor E is isomorphic to a

copy of P1 × P1, ruled in two different ways. Then contract E along the other ruling,

moving the curve C to the neighbouring component. The resulting birational map is

the elementary modification of Type I along C. This process is explained by Figure 2.1.

Elementary Modifications of Type II. Suppose that C ⊂ X0 is a double curve
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−1

−1C

Blow up C

−1

−1

−1 −1E

Contract E

−1 −1

Figure 2.2: Elementary Modification of Type II.

which is smooth and rational, with self-intersection (−1) in both components in which

it lies; we call such C a (∗)-curve. Begin by blowing up C in X. The exceptional

divisor E is again isomorphic to P1 × P1. Then contract E along the other ruling. The

resulting birational map is the elementary modification of Type II along C. This process

is explained by Figure 2.2.

These operations are important because of the following result, originally proved by

Friedman and improved by Shepherd-Barron:

Theorem 2.3.6 [SB83b, Corollary 3.1]. Suppose that π : X → ∆ and π′ : X ′ → ∆ are

semistable degenerations of algebraic K3 surfaces that are isomorphic over ∆∗ and have

ωX , ωX′ trivial. Then the birational map f : X− → X ′ is a composition of elementary

modifications.

Elementary modifications are also important in the study of relative log canonical

models, as we see from the following lemma:

Lemma 2.3.7. Suppose that πi : Xi → ∆ for i = 1, 2 are two semistable degenerations

of K3 surfaces with ωXi trivial. Suppose further that X2 is obtained from X1 by an
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elementary modification ψ : X1− → X2. Let H be an effective divisor on X1. Then

(X1, H) and (X2, ψ+H) have the same relative log canonical algebra over ∆.

Proof. We can find a nonsingular Y and morphisms f1 and f2 so that the diagram

Y
f1

~~

f2

  

X1

π1
  

ψ
// X2

π2
~~

∆

commutes (Y is a resolution of indeterminacies for ψ). Furthermore, as Xi is nonsin-

gular and ωXi is trivial, ωY ∼= OY (E) for some E effective and fi-exceptional for each

i. Finally, noting that f∗1 (H) = f∗2 (ψ+H), by [KM98, Corollary 3.53] the relative log

canonical algebras of (X1, H), (X2, ψ+H) and (Y, f∗1H) must all be equal.

Before we state the main theorem of this section, we need a definition:

Definition 2.3.8. Let π : X → S be a proper, flat surjective morphism of nonsingular

complex varieties (or complex manifolds) and let H be an effective divisor on X. We

say that H is π-flat if H ∩Xs is a well-defined divisor on each fibre Xs of π : X → S.

We are now in a position to state a theorem of Shepherd-Barron [SB83b, Theorem

1] that will enable us to prove the numerical conditions on the polarisation divisor that

we require in order to apply Proposition 2.2.7. We split the original theorem into two

parts for convenience:

Theorem 2.3.9 [SB83b, Theorem 1(a)]. Suppose that π : X → ∆ is a semistable de-

generation of K3 surfaces. Assume that L ∈ Pic(X) induces a nef and big line bundle

Lt ∈ Pic(Xt) for all t ∈ ∆∗. Then there is an effective or zero divisor Z supported on

the components of X0 such that L′ = L ⊗ OX(−Z) is of the form L′ = OX(H), where

H is effective and π-flat over ∆.
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Theorem 2.3.10 [SB83b, Theorem 1(b)]. Suppose that π : X → ∆ is a semistable

degeneration of K3 surfaces such that ωX ∼= OX (i.e. a Kulikov model). Assume that

L ∈ Pic(X) is a line bundle on X satisfying the conclusion of Theorem 2.3.9. Then a

series of elementary modifications may be performed on X that transform L into a nef

line bundle.

With this result we are ready to begin studying relative log canonical models of

threefolds fibred by K3 surfaces of degree two.

2.4 The Case of a Threefold Fibred by K3 Surfaces of

Degree Two

In this section we return our attention to threefolds fibred by K3 surfaces of degree

two. The aim is to emulate the local construction in the previous section, so that we

may use Proposition 2.2.7 and Corollary 2.2.4 to prove the existence of their relative

log canonical models.

Begin by letting S be a nonsingular curve. Let (X,π,L) be a threefold fibred by K3

surfaces of degree two over S.

In order to apply the results of the last section, we would like to make the further

assumption that the fibration π : X → S is semistable (i.e. all fibres of X are reduced

divisors with normal crossings). We note that, by [BHPvdV04, Theorem III.10.3], a gen-

eral threefold fibred by K3 surfaces of degree two can be transformed into a semistable

one by pulling everything back to a finite cover of the base curve S, then resolving

singularities.

This is all well and good but, unfortunately, if we wish to apply the theory developed

in the last section to study the relative log canonical models produced (once we have

proved their existence!) under this setup we run into a problem. The difficulty lies in

the local assumptions that we made: specifically, in the fact that we did not assume
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algebraicity of the degeneration π : X → ∆. This means that the classification of

Theorem 2.3.5 holds for certain non-algebraic degenerations, as well as for algebraic ones.

Thus, if we wish to use this classification to characterise the relative log canonical models

of threefolds fibred by K3 surfaces of degree two, we should expect our characterisation

to contain gaps corresponding to the non-algebraic threefolds.

Fortunately, Shepherd-Barron provides us with a way to find a solution:

Theorem 2.4.1 [SB83b, Theorem 2(b)]. Suppose that π : X → ∆ is a semistable de-

generation of K3 surfaces such that ωX ∼= OX (i.e. a Kulikov model), and suppose that

L ∈ Pic(X) is a nef line bundle that is big on Xs for all s ∈ ∆∗. Then there is an

integer N > 0 and a divisor D supported on X0 such that M := LN ⊗ OX(D) defines

a birational morphism φt : X → Xt that contracts finitely many curves to Gorenstein

terminal singularities.

From this, we see that all of the analytic degenerations considered in the last section

are birational to singular projective degenerations. Thus, we can fill in the gaps in our

categorisation by considering singular threefolds fibred by K3 surfaces of degree two.

We define:

Definition 2.4.2. Let S be a nonsingular complex curve. A terminal threefold fibred

by K3 surfaces of degree two over S, denoted (X,π,L), consists of:

(1) A three dimensional complex variety X that has at worst Gorenstein terminal

singularities;

(2) A projective, flat, surjective morphism π : X → S with connected fibres, whose

general fibres are K3 surfaces;

(3) An invertible sheaf L on X that induces an ample invertible sheaf Ls with

self-intersection number Ls.Ls = 2 on a general fibre Xs of π : X → S.

Next we need to define what it means for π : X → S to be semistable when X is

singular.
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Definition 2.4.3. Let X be a normal complex variety with Gorenstein terminal singu-

larities that admits a K3-fibration π : X → S over a nonsingular complex curve S. We

say that π : X → S is semistable if

(i) all fibres of π are reduced divisors that have normal crossings outside of the

singular locus on X,

(ii) for any singular point p ∈ X, let Xp be the fibre of π containing p. Then there

exist an analytic neighbourhood Up ⊂ X of p and a local (analytic) resolution

fp : Yp → Up such that Ex(fp) has codimension two in Yp and f−1
p (Xp) has normal

crossings.

We remark that in the case where X is smooth, this notion coincides with the usual

definition of semistability. We also note that, by definition, any semistable K3-fibration

π : X → S admits an analytic resolution f : X → X such that Ex(f) has codimension

two in X. We call such f : X → X a small analytic resolution of X.

Remark 2.4.4. Gorenstein terminal singularities admitting small resolutions have been

studied by several authors. Reid [Rei83, Corollary 1.12] has shown that any such sin-

gularity must be compound Du Val (see Definition 4.3.6). Furthermore, Katz [Kat91]

has partially categorised which of the compound Du Val singularities admit small reso-

lutions.

Note that the proper morphism π := π ◦ f endows the complex manifold X with

the structure of a semistable K3-fibration over S. In light of this, we will extend our

definition of a threefold fibred by K3 surfaces of degree two in a second direction, to

encompass the case where X is analytic.

Definition 2.4.5. Let S be a nonsingular complex curve. An analytic threefold fibred

by K3 surfaces of degree two over S, denoted (X,π,L), consists of:

(1) A nonsingular compact complex threefold X;
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(2) A proper, flat, surjective morphism π : X → S with connected fibres, whose

general fibres are K3 surfaces;

(3) A line bundle L on X that induces an ample invertible sheaf Ls with self-

intersection number Ls.Ls = 2 on a general fibre Xs of π : X → S.

Now that we have defined our objects of study, we would like to begin our study

of their relative log canonical models. As before, let S be a nonsingular complex curve

and let (X,π,L) be a semistable terminal threefold fibred by K3 surfaces of degree two

over S. We will be interested in studying the relative log canonical model of the pair

(X,L).

We remark that if f : X → X is a small analytic resolution of X, [KM98, Corollary

3.53] shows that the relative log canonical algebras R(X,L) and R(X, f∗L) agree so, if

it exists, (X,L) and (X, f∗L) have the same relative log canonical model over S. This

means that we can use analytic threefolds fibred by K3 surfaces of degree two to study

the relative log canonical models of terminal ones.

With this in place we would like to emulate the construction performed in Section

2.3 for a semistable terminal threefold fibred by K3 surfaces of degree two, so that we

can use Proposition 2.2.7 and Corollary 2.2.4 to prove that its relative log canonical

model exists.

In the style of Theorem 2.3.9, we would first like to find a twisted polarisation that

agrees with L on a general fibre, but is better behaved on the singular fibres. We say:

Definition 2.4.6. Let π : X → S be a proper, flat, surjective morphism of normal

complex varieties (resp. compact complex manifolds), and suppose that L is an invertible

sheaf (resp. line bundle) on X. Then we say that L is locally π-flat if for all closed

points s ∈ S there exists a neighbourhood Us of s and a section in Γ(π−1(Us),L) that

defines an effective and π-flat divisor over Us.

Working on a small analytic resolution f : X → X and looking locally around each
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of the singular fibres, using Theorem 2.3.9 we may find a divisor Z, supported on the

components of the singular fibres of π : X → S, so that the twisted invertible sheaf

f∗L ⊗ OX(Z) is locally π-flat on X. Then as Ex(f) has codimension two in X, the

twisted sheaf L⊗OX(f+Z) must also be locally π-flat on X. We note that L⊗OX(f+Z)

agrees with L on a general fibre of π, so (X,π,L ⊗OX(f+Z)) is a semistable terminal

threefold fibred by K3 surfaces of degree two.

In light of this, for the remainder of this chapter we will assume that (X,π,L)

is a semistable terminal threefold fibred by K3 surfaces of degree two such that L is

locally π-flat. We will denote by f : X → X a small analytic resolution of X and define

L := f∗L. Note that as Ex(f) has codimension two, L must also be locally π-flat.

Given this, the rest of this section will be devoted to showing that the relative log

canonical model of (X,L) exists. In order to do this, we attempt to emulate the local

construction given in Section 2.3. We begin by looking at the invertible sheaf L in more

detail.

Proposition 2.4.7. Suppose that (X,π,L) is a semistable terminal threefold fibred by

K3 surfaces of degree two over a nonsingular curve S. Then we may decompose L

as L ∼= OX(H) ⊗ π∗M, where M is an invertible sheaf on S and H is an effective,

irreducible and π-flat Cartier divisor on X.

Proof. Note that in order to prove the proposition, it suffices to show that we may

find an invertible sheaf M on S such that L ⊗ π∗M−1 ∼= OX(H) for some effective,

irreducible and π-flat divisor H.

To constructM, we begin by choosing some ample invertible sheaf N on S. By the

ampleness property, we may find an integer m > 0 such that π∗L ⊗ Nm is generated

by its global sections. Furthermore, by the projection formula and the Leray spectral

sequence, we have an isomorphism

H0(X,L ⊗ π∗(Nm)) ∼= H0(S, π∗L ⊗Nm). (2.3)
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In particular, the space of sections H0(X,L⊗π∗Nm) is nonempty. Let D be an effective

divisor defined by a general section in this space.

We make a brief digression here to explain what we mean by a general section. We

say that an irreducible component Di of an effective divisor D is horizontal if π(Di) = S

and vertical if π(Di) is a closed point in S. Let Dh denote the sum of the horizontal

components of D and Dv denote the sum of the vertical components. As π is proper, the

image of any irreducible component must be closed and connected, so any irreducible

component of D is either horizontal or vertical and D = Dh + Dv. Furthermore, Dh

and Dv must be effective because D is.

Now let s ∈ S be a point over which the fibre Xs is reducible and let V be any

irreducible component of Xs. As L is locally π-flat and π∗Nm is a sum of fibres,

L ⊗ π∗Nm must also be locally π-flat. So there exists a neighbourhood Us of s and a

section of H0(π−1(Us),L ⊗ π∗Nm) that does not vanish on V . Then, since π∗L ⊗Nm

is generated by its global sections, using the isomorphism (2.3) we find that there exists

a global section of L ⊗ π∗Nm that does not vanish on V . So the natural injection

iV : H0(X,L ⊗ π∗Nm ⊗OX(−V )) −→ H0(X,L ⊗ π∗Nm)

cannot be surjective. Let UV be the Zariski open set in H0(X,L⊗π∗Nm) defined by the

complement of the image of iV . By taking the intersection of the UV thus obtained over

all of the (finitely many) components of all the reducible fibres, we obtain a nonempty

open set U ⊂ H0(X,L ⊗ π∗Nm). We say that D is defined by a general section if the

section defining it is contained in U .

By construction, we see that only components of irreducible fibres may appear in

Dv. So Dv must be a sum of fibres and as such can be written as the inverse image of

an effective divisor E on S.

62



2.4. The Case of a Threefold Fibred by K3 Surfaces of Degree Two

We have

OX(Dh) ∼= L ⊗ π∗(Nm ⊗OS(−E)).

Let M = N−m ⊗ OS(E). In order to complete the proof of Proposition 2.4.7 we just

need to show that Dh is irreducible and π-flat.

We begin with π-flatness. Let Dh
i denote a reduced and irreducible component of

Dh. To show that Dh
i is π-flat, it suffices to show that Dh

i is flat when considered as

a scheme over S. As S is a nonsingular curve, by [Har77, Proposition III.9.7] this will

follow if we can show that any associated point of Dh
i maps to the generic point of S.

But Dh
i is reduced and irreducible, so its only associated point is the generic point,

which maps to the generic point of S as π|Dh
i

is surjective. Thus every component Dh
i

of Dh is π-flat, so Dh must be also.

Finally, we have to show that Dh is irreducible. As the restriction of L ⊗ π∗Nm to

a general fibre of π defines an ample invertible sheaf with self-intersection number two,

it is easy to see that the intersection of Dh with any such fibre is an irreducible curve

of genus two. Thus, since Dh is π-flat and irreducible on a general fibre, it must be

irreducible.

Let H and M be defined as in Proposition 2.4.7. Note that, as the exceptional set

Ex(f) has codimension two, the decomposition of L given by this proposition induces a

decomposition L ∼= OX(f−1
+ H)⊗π ∗M on X. With this in mind, we define H := f−1

+ H.

Our next step will be to find a new space birational to X that shares the same

relative log canonical model but has certain desirable properties that make it easier to

study. This will be the analogue of the Kulikov model studied in the last section.

As π : X → S is semistable and the components of its fibres are projective (so

Kähler), by Theorem 2.3.2 we may find a birational modification g that fits into a
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commutative diagram

X
g

//

π
��

X ′

π′
~~

S

where X ′ is a nonsingular compact complex manifold, all fibres of π′ are semistable and

any closed point s ∈ S has an open neighbourhood Us such that ωπ′ −1(Us)
∼= Oπ′ −1(Us).

Such X ′ is called a locally Kulikov model. Note that f only modifies finitely many fibres,

as ωπ−1(Us)
∼= Oπ−1(Us) is already satisfied if the fibre Xs of π over s is nonsingular.

Next we need to define a polarisation on X ′. We have:

Proposition 2.4.8. With notation as above, define L′ ∼= OX′(g+H)⊗(π′)∗M. Then L′

is a locally π′-flat line bundle and (X ′, π′,L′) is a semistable analytic threefold fibred by

K3 surfaces of degree two. Furthermore, the pairs (X ′,L′) and (X,L) define the same

relative log canonical algebra over S.

Proof. Note first that L′ must be locally π′-flat, as Ex(g−1) has codimension two in X ′.

Furthermore, as g is an isomorphism on a general fibre of π, the restriction of L′ to

such a fibre agrees with the restriction of L, so must define an ample line bundle with

self-intersection number two. Thus (X ′, π′,L′) is a semistable analytic threefold fibred

by K3 surfaces of degree two.

To show that the relative log canonical algebras agree, we will begin by considering

the relative log canonical algebras of (X,H) and (X ′, g+H). As H is irreducible and

π-flat, the strict transform g+H must also be irreducible and π′-flat. Thus, as X and

X ′ are smooth, Proposition 2.1.5 gives discrep(X,H) = 0 and discrep(X ′, g+H) = 0, so

the log pairs (X,H) and (X ′, g+H) are both canonical.

Now let

Y
g1

��

g2

  

X
g

// X ′
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be a resolution of indeterminacies for the map g. Then as (X,H) is canonical, by

definition

ωY ⊗OX
(
g−1

1 +H
) ∼= g∗1

(
ωX ⊗OX(H)

)
⊗OY (E1),

for some effective and g1-exceptional E1. So, by [KM98, Corollary 3.53], the relative

log canonical algebras of (X,H) and (Y, g−1
1 +H) are isomorphic. Similarly, the relative

log canonical algebras of (X ′, g+H) and (Y, g−1
2 +g+H) are also isomorphic.

Thus, for all n > 0 we have isomorphisms

π∗
(
ωn
X
⊗OX(H)n

) ∼= (π ◦ g1)∗
(
ωnY ⊗OY (g−1

1 +H)n
)

∼= (π′ ◦ g2)∗
(
ωnY ⊗OY (g−1

2 +g+H)n
)

∼= π′∗
(
ωnX′ ⊗OX′(g+H)n

)
.

Tensoring both sides by Mn and applying the projection formula we obtain

π∗(ω
n
X
⊗ Ln) ∼= π′∗(ω

n
X′ ⊗ L′n)

for all n > 0. This completes the proof.

Thus to recap, we may assume that we are in the following situation: X ′ is a threefold

that admits a K3-fibration π′ : X ′ → S, with X ′ locally Kulikov. Note that X ′ may

be non-algebraic, but that the irreducible components of the fibres of π′ : X ′ → S are

Kähler. L′ is a locally π′-flat line bundle on X ′ making (X ′, π′,L′) into a semistable

analytic threefold fibred by K3 surfaces of degree two. Furthermore, if it exists, (X,L)

and (X ′,L′) define the same relative log canonical model over S.

Our final step is to prove an analogue of Theorem 2.3.10: we show that we can

perform a series of elementary modifications to X ′ to obtain a new pair (X ′′,L′′) with

the desirable properties that its relative log canonical model Xc is well-defined and the

birational map X ′′− → Xc is actually a morphism. Furthermore, as we will use only
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elementary modifications on finitely many fibres to reach X ′′, the triple (X ′′, π′′,L′′) will

define a semistable analytic threefold fibred by K3 surfaces of degree two and the pairs

(X ′′,L′′) and (X ′,L′) will define the same relative log canonical model over S. So we

may use (X ′′,L′′) to study the relative log canonical model of (X,L), as we originally

intended.

The existence of (X ′′,L′′) is given by the following theorem:

Theorem 2.4.9. Let (X ′, π′,L′) be a semistable analytic threefold fibred by K3 surfaces

of degree two over a nonsingular curve S. Suppose that X ′ is locally Kulikov and L′ is

locally π′-flat. Then there exists a birational transformation

X ′

π′
  

η
// X ′′

π′′
~~

S

such that:

(i) η is a composition of elementary modifications on finitely many fibres of π′,

(ii) η transforms L′ into a π′′-nef and locally π′′-flat line bundle L′′ on X ′′,

(iii) Xc := ProjSR(X ′′,L′′) is the relative log canonical model for X ′′ and the

natural map φ′′ : X ′′ → Xc is a birational morphism.

Proof. Let S0 ⊂ S be the Zariski open set of points over which the fibres of π′ are

smooth K3 surfaces that have an ample invertible sheaf with self-intersection number

two induced upon them by L′. The complement S − S0 is a finite set of points; denote

them by s1, . . . , sk. Let X ′si denote the fibre over the point si.

Looking locally around each of the si, by Theorem 2.3.10, we may find a series of

elementary modifications on X ′si that transforms L′ into a π′-nef sheaf L′′ in a neigh-

bourhood of X ′si . Let η : X ′− → X ′′ be the composition of the elementary modifications
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on all of the X ′si . Then as η only modifies a codimension 2 subset, L′′ is locally π′′-flat.

So, by construction, η and L′′ satisfy parts (i) and (ii) of the theorem.

To prove part (iii), we will first use Proposition 2.2.7 to show that the relative log

canonical algebra

R(X ′′,L′′) =
∞⊕
n≥0

π′′∗
(
ωnX′′ ⊗ (L′′)n

)
is locally finitely generated as an OS-algebra and the map φ′′ : X ′′ → ProjSR(X ′′,L′′)

is a morphism. Then we will use Corollary 2.2.4 to show that φ′′ is birational and

Xc = ProjSR(X ′′,L′′) is the relative log canonical model for (X ′′,L′′).

By the argument above, we know that L′′ is π′′-nef on X ′′. Furthermore, since X ′′

is locally Kulikov, ωX′′ ⊗ L′′ is also π′′-nef. Finally, for any s ∈ S0 the restriction L′′s

is ample, so in particular it must be big. Hence, we may apply Proposition 2.2.7 to

see that R(X ′′,L′′) is locally finitely generated as an OS-algebra and the natural map

φ′′ : X ′′ → ProjSR(X ′′,L′′) is a morphism.

Before we can apply Corollary 2.2.4, we still have to show that the dimension of

ProjSR(X ′′,L′′) is equal to three. In order to see this, we consider the restriction

of ProjSR(X ′′,L′′) to S0. Since S0 is open in S, this restriction is isomorphic to

ProjS0
R(π′′ −1(S0),L′′|π′′ −1(S0)). But L′′ is π′′-ample over S0, so the natural map

π′′ −1(S0) −→ ProjS0
R
(
π′′ −1(S0),L′′|π′′ −1(S0)

)
is actually an isomorphism. Hence, the dimension of ProjSR(X ′′,L′′) is equal to the

dimension of X ′′, which is three. So we may apply Corollary 2.2.4 to prove part (iii) of

the theorem.

For future reference, the threefolds constructed in this section fit together into a

diagram as shown in Figure 2.3. Note that in this diagram X, X ′ and X ′′ (with the

relevant polarisations) are all semistable analytic threefolds fibred by K3 surfaces of
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X
g
//

f
��

X ′
η
//

π′

��

X ′′

φ′′

��

X

π
  

φ
,, Xc

πc
}}

S

Figure 2.3.

degree two and X is a semistable terminal threefold fibred by K3 surfaces of degree two.

We conclude this section with a result that will allow us to study the fibres of the

relative log canonical model in the next chapter:

Corollary 2.4.10. Given π′′ : X ′′ → S and L′′ on X ′′ that satisfy the conclusions of

Theorem 2.4.9, for all i > 0 and all n > 0 we have

Riπ∗
(
ωnX′′ ⊗ (L′′)n

)
= 0.

Proof. This will follow immediately from [Anc87, Theorem 2.1] if we can show that

ωn−1
X′′ ⊗ (L′′)n is π′′-nef and that there exists a dense open subset S0 of S such that

(ωn−1
X′′ ⊗ (L′′)n)|X′′s is big for all fibres X ′′s over closed points s ∈ S0. However, these

properties follow from the corresponding properties for L′′ (proved above) and the fact

that ωX′′ is trivial in a neighbourhood of any fibre (by the locally Kulikov assumption).
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Chapter 3

Fibres of the Relative Log

Canonical Model

3.1 Semi Log Canonical Surface Singularities

Before embarking on the main work of this chapter, we begin with a slight digression

on semi log canonical surface singularities. These generalise the notion of log canonical

singularities defined in Section 2.1. More information about them can be found in

[KSB88, Section 4].

Intuitively, a surface with semi log canonical singularities is allowed to contain some

double curves alongside the usual log canonical surface singularities. This property

will make semi log canonical singularities very important when we come to classify the

singularities occurring in the singular fibres of our relative log canonical models, as we

expect degenerate fibres of Types II and III to contain some double curves.

Note first that, in this section, a surface will be defined to be a 2-dimensional

reduced separated scheme of finite type over C. In particular, we do not assume that

our surfaces are normal or even irreducible. We call a surface semi-smooth if it is

singular along certain double curves and smooth elsewhere. Formally, we define:
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Definition 3.1.1 [KSB88, 4.2]. A surface X will be called semi-smooth if every closed

point x ∈ X is either smooth or analytically isomorphic to one of

(i) A double normal crossing point 0 ∈ {xy = 0} ⊂ C3; or

(ii) A pinch point 0 ∈ {x2 = zy2} ⊂ C3.

The singular locus of a semi-smooth surface X is a smooth curve DX , which will be

called the double curve of X.

This leads naturally to the concept of a semi-resolution:

Definition 3.1.2 [KSB88, 4.3]. A map f : Y → X is called a semi-resolution of X if

the following conditions are satisfied:

(i) f is proper;

(ii) Y is semi-smooth;

(iii) if DY is the double curve of Y , then no component of DY is mapped to a point;

(iv) there is a finite set Σ ⊂ X such that f : f−1(X − Σ) → X − Σ is an isomor-

phism.

If f : Y → X is a semi-resolution, we say that a curve Ei ⊂ Y is exceptional if

f(Ei) is a point. Let E =
⋃
iEi be all the exceptional curves. Then we say that the

semi-resolution f : Y → X is good if E ∪ DY has smooth components and transverse

intersections. The next proposition says that good semi-resolutions exist:

Proposition 3.1.3 [KSB88, Proposition 4.5]. Let X be a surface such that all but

finitely many points of X are smooth or double normal crossing points. Then X has a

good semi-resolution.

Now we are ready to define a semi log canonical surface singularity. The definition

closely mirrors that of a log canonical singularity (2.1.4), but we have to be more careful

when dealing with the canonical sheaf ωX as X may not be normal.
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So let x ∈ X be a surface singularity, such that X − x is semi-smooth. As in

the normal case, we define ωX as the reflexivisation of the top wedge of the sheaf of

differentials, ωX := (
∧2 ΩX)∨∨. Then for any m > 0, define the reflexivised mth tensor

power ω
[m]
X := (ωmX )∨∨.

Suppose further that X is Q-Gorenstein (i.e. X is Cohen-Macaulay and ω
[m]
X is

locally free for some m > 0). Let f : Y → X be a good semi-resolution of X. Then we

can write

ω
[m]
Y
∼= f∗ω

[m]
X ⊗OY

(∑
i

maiEi

)
,

where the Ei are exceptional divisors and ai ∈ Q. Then:

Definition 3.1.4 [KSB88, 4.17]. x ∈ X as above is called a semi log canonical singu-

larity if ai ≥ −1 for all i.

Note that, by [KSB88, Remark 4.18], this notion is independent of the good semi-

resolution chosen.

Now that we have defined them, we would like to have a classification of the possible

semi log canonical singularities. Fortunately this has already been solved. We have:

Theorem 3.1.5 [KSB88, Theorem 4.21]. Let x ∈ X be a surface singularity, such that

X − x is semi-smooth. Suppose further that X is Gorenstein. Then x ∈ X is semi log

canonical iff it is locally analytically isomorphic to one of:

• A smooth point.

• A rational double point 0 ∈ {z2 = f(x, y)} ⊂ C3, where the branch curve

{f(x, y) = 0} ⊂ C2 has an A-D-E singularity at 0 ∈ C2.

• A double normal crossing point 0 ∈ {xy = 0} ⊂ C3.

• A pinch point 0 ∈ {x2 = zy2} ⊂ C3.

• A simple elliptic singularity.
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• A cusp.

• A degenerate cusp.

The remainder of this section will be devoted to a more detailed examination of

simple elliptic singularities, cusps and degenerate cusps. These singularities can be

classified by the form of their minimal semi-resolutions so, in order to understand them,

we need to know what it means for a semi-resolution to be minimal :

Definition 3.1.6 [KSB88, 4.9]. Let X be a surface that is semi-smooth outside of a

finite number of points. f : Y → X be a semi-resolution and let g : Y → Y be the

normalisation of Y . Let E =
⋃
iEi be the union of the exceptional curves. Then

f : Y → X is called minimal if for all Ei the normalisation Ei = g−1(Ei) is not a

rational (−1)-curve.

Note that, by [KSB88, Proposition 4.10], the minimal semi-resolution exists and is

unique. However, it may not necessarily be a good semi-resolution.

The notion of minimal semi-resolution allows us to give a definition of the simple

elliptic singularities, cusps and degenerate cusps:

Definition 3.1.7 [KSB88, 4.20]. A Gorenstein surface singularity is called:

• Simple elliptic if it is normal and the exceptional divisor of the minimal resolution

is a smooth elliptic curve.

• A cusp if it is normal and the exceptional divisor of the minimal resolution is a

cycle of smooth rational curves or a rational nodal curve.

• A degenerate cusp if it is not normal and the exceptional divisor of the minimal

semi-resolution is a cycle of smooth rational curves or a rational nodal curve.

We conclude this section with a closer look at each of these singularities. The

simplest class is that of the simple elliptic singularities. We will be interested in two

types of these singularities, which Saito [Sai74] calls Ẽ7 and Ẽ8. We have:
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Proposition 3.1.8. Let x ∈ X be a simple elliptic singularity. Let f : Y → X be a

minimal resolution with smooth elliptic exceptional curve E.

(i) If E2 = −1, then x ∈ X is locally analytically isomorphic to

Ẽ8 : 0 ∈ {z2 = y(y − x2)(y − λx2)} ⊂ C3

for some λ ∈ C− {0, 1}.

(ii) If E2 = −2, then x ∈ X is locally analytically isomorphic to

Ẽ7 : 0 ∈ {z2 = xy(y − x)(y − λx)} ⊂ C3

for some λ ∈ C− {0, 1}.

Proof. By the classification in [Lau77, Section V], simple elliptic singularities having

exceptional curve E with −E2 sufficiently small are determined up to change of co-

ordinates by E2 and the j-invariant of E. Moreover, [Sai74, Satz 1.9] implies that if

E2 = −1, then x ∈ X is locally analytically isomorphic to

0 ∈ {z2 = y(y − x2)(y − λx2)} ⊂ C3

and if E2 = −2, then x ∈ X is locally analytically isomorphic to

0 ∈ {z2 = xy(y − x)(y − λx)} ⊂ C3,

for some λ ∈ C − {0, 1}. Furthermore, in both cases λ completely determines the

j-invariant of E, given by

j(E) =
4

27

(λ2 − λ+ 1)3

λ2(λ− 1)2
.
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Note that both types of singularity mentioned in the proposition arise from double

covers of C2 ramified over singular curves. With this in mind, we call a curve singularity

0 ∈ {y(y − x2)(y − λx2) = 0} ⊂ C2

a consecutive triple point and

0 ∈ {xy(y − x)(y − λx) = 0} ⊂ C2

a quadruple point.

The cusp singularities are somewhat more complex. Let x ∈ X be a cusp singularity.

Let f : Y → X be a minimal resolution, with exceptional divisor E. By definition, E

is a cycle of smooth rational curves or a rational nodal curve. We study two possible

types of cycle. The first, called an (n, r)-cycle (for n < 0, r ≥ 0), consists of a cycle of

r + 1 rational curves E0, . . . , Er satisfying

Ei.Ej =



n if i = j = 0 and r = 0,

n− 2 if i = j = 0 and r > 0,

−2 if i = j 6= 0

1 if i = j ± 1 (mod r + 1)

0 otherwise.

Note that the rational nodal curve is a special case of the (n, r)-cycle, where r = 0.

This configuration is illustrated in Figure 3.1.

The second, called an (n1, n2, r1, r2)-cycle (for n1, n2 < 0, r1, r2 ≥ 0) consists of a
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· · · r · · ·

n− 2
−2

−2

−2

−2

n

r = 0 r ≥ 1

Figure 3.1: (n, r)-cycle.

n1 − 2

n2 − 2

−2

−2

−2

−2

...
r1

...
...
r2

...

Figure 3.2: (n1, n2, r1, r2)-cycle.

cycle of s = r1 + r2 + 2 rational curves E0, . . . , Es−1 satisfying

Ei.Ej =



n1 − 2 if i = j = 0

n2 − 2 if i = j = r1 + 1

−2 if i = j /∈ {0, r1 + 1}

1 if i = j ± 1 (mod s)

0 otherwise.

This configuration is illustrated in Figure 3.2.

Using this notation, we have:

Proposition 3.1.9. Let x ∈ X be a cusp singularity. Let f : Y → X be a minimal

resolution with exceptional divisor E. Then
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(i) If E is a (−1, r)-cycle, then x ∈ X is locally analytically isomorphic to

T2,3,r+7 : 0 ∈ {z2 = (y + x2)(y2 + xr+5)} ⊂ C3.

(ii) If E is a (−2, r)-cycle, then x ∈ X is locally analytically isomorphic to

T2,4,r+5 : 0 ∈ {z2 = x(y + x)(y2 + xr+3)} ⊂ C3.

(iii) If E is a (−1,−1, r1, r2)-cycle, then x ∈ X is locally analytically isomorphic

to

T2,r1+5,r2+5 : 0 ∈ {z2 = (y2 + xr1+3)(x2 + yr2+3)} ⊂ C3.

Proof. By the classification in [Lau77, Section V], cusp singularities of the above types

are determined up to change of co-ordinates by the form of their exceptional divisors.

The local forms are taken from [Lau77, Table 1] and [Lau77, Table 2].

Finally, the degenerate cusps are the most esoteric. We won’t say much about them

here, aside from the observation that the double pinch points 0 ∈ {z2 = y2(y+x2)} ⊂ C3

and 0 ∈ {z2 = x2y2} ⊂ C3 are both degenerate cusps [SB83a, Section 1].

3.2 Degenerations of K3 Surfaces of Degree Two

The aim of this chapter is to explicitly classify the fibres appearing in the relative

log canonical models of semistable terminal threefolds fibred by K3 surfaces of degree

two. Our reason for doing this is simple. As mentioned in Section 2.1, we would like to

emulate Catanese’s and Pignatelli’s explicit construction of the relative canonical model

for a surface fibred by genus two curves. However, their construction relies heavily on

a theorem of Mendes-Lopes [ML89, Theorem 3.7] that classifies the canonical rings of

degenerate genus two curves. Thus in order to emulate their construction, we need to
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3.2. Degenerations of K3 Surfaces of Degree Two

have an explicit description of the singular fibres occurring in our relative log canonical

models. In order to perform this classification, we rely heavily upon results from the

birational geometry of degenerations; for an overview of this theory, see Section 2.3.

We begin by recalling the set up from Section 2.4. Let S denote a nonsingular

complex curve and let (X,π,L) be a semistable terminal threefold fibred by K3 surfaces

of degree two over S. After twisting the polarisation by OX(Z), for some divisor Z

supported on finitely many fibres of π, we may further assume that the polarisation L

is locally π-flat.

With this setup we may then find π′′ : X ′′ → S birational to π : X → S and a line

bundle L′′ on X ′′ such that (X ′′, π′′,L′′) is a semistable analytic threefold fibred by

K3 surfaces of degree two, X ′′ is locally Kulikov, L′′ is π′′-nef and locally π′′-flat, and

(X ′′,L′′) has the same relative log canonical model as (X,L). Moreover, by Theorem

2.4.9, the map φ′′ : X ′′ → (X ′′)c of X ′′ to its relative log canonical model is a morphism.

Note, however, that in return for this structure we may lose algebraicity of X ′′. We

have a diagram

X
φ

//

��

Xc := ProjSR(X,L)

X ′′

π′′
  

φ′′
// (X ′′)c := ProjSR(X ′′,L′′)

S

πc

yy

With this in place, we are ready to start analysing the fibres of the relative log

canonical model πc : (X ′′)c → S. We begin by using the results of Section 2.3 to form

a coarse classification of the fibres of π′′ : X ′′ → S. By definition, the fibre X ′′s over s is

a general fibre if and only if it is a K3 surface of degree two. In this case, by Example

1.1.4, L′′s is generated by its global sections and the fibre X ′′s is hyperelliptic.

Using Theorem 2.3.5, we may write down a coarse classification of the fibres in X ′′

where one of these conditions fails, and hence classify the special fibres of X ′′:
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(Ih) X ′′s is a smooth K3 surface, L′′s is generated by its global sections but is not ample.

(Iu) X ′′s is a smooth K3 surface, L′′s is not generated by its global sections.

(II) X ′′s is a chain of elliptic ruled components with rational surfaces at each end, and

all double curves are smooth elliptic curves.

(III) X ′′s consists of rational surfaces meeting along rational curves which form cycles

in each component, the dual graph of X ′′s is a tiling of the sphere S2.

We call a general fibre Type 0 and a special fibre Type Ih, Iu, II or III, depending upon

which case it satisfies.

In order to study the images of these fibres under the birational map φ′′, it will be

convenient to restrict ourselves to a small neighbourhood of a chosen fibre X ′′s . This will

make the situation we are considering much simpler and allow us to use many of the

techniques developed in Section 2.3 to study the properties of this chosen fibre. First,

however, we need to check that we can safely do this.

Suppose that we wish to study the fibre X ′′s over s ∈ S. Let ∆ := {z ∈ C : |z| < 1}

and let i : ∆→ S be an embedding with i(0) = s. Let X ′′(s) be defined by the pull-back:

X ′′(s)
j
//

π′′(s)
��

X ′′

π′′

��

∆
i // S

We wish to show that the restriction of (X ′′)c to ∆ agrees with the relative log canonical

model of the pair (X ′′(s), j∗L′′), given by

X ′′(s)c := Proj∆R(X ′′(s), j∗L′′).

By definition, (X ′′)c is defined by the direct images π′′∗(ω
n
X′′⊗(L′′)n) for n > 0, so the

restriction of (X ′′)c to ∆ is defined by the restriction of these direct images to ∆, given

by i∗π∗(ωX′′ ⊗ (L′′)n). On the other hand, since X ′′ is locally Kulikov, ωX′′(s) ∼= OX′′(s)
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and X ′′(s)c is defined by the direct images π′′(s)∗(j
∗L′′)n for n > 0. The fact that these

two maps agree on X ′′(s) follows from the k = 0 case of:

Lemma 3.2.1. For all n > 0 and k ≥ 0, there is a natural isomorphism

i∗Rkπ′′∗(ω
n
X′′ ⊗ (L′′)n) ∼= Rkπ′′(s)∗(j

∗L′′)n.

Proof. Firstly note that j∗ωX′′ ∼= ωX′′(s) ∼= OX′′(s), so the right hand side is isomor-

phic to Rkπ′′(s)∗((j
∗ωX′′)

n ⊗ (j∗L′′)n). Then, since tensor product commutes with in-

verse image, this is equal to Rkπ′′(s)∗j
∗(ωnX′′ ⊗ (L′′)n). Finally, since taking higher

direct images commutes with restriction to open subsets, we have an isomorphism

Rkπ′′(s)∗j
∗(ωnX′′ ⊗ (L′′)n) ∼= i∗Rkπ′′∗(ω

n
X′′ ⊗ (L′′)n).

Furthermore, as L′′ is π′′-nef and locally π′′-flat, we may assume j∗L′′ = OX′′(s)(H)

for some effective, nef and π′′(s)-flat divisor H on X ′′(s).

With this in place, we are ready to begin studying the explicit form of the fibres ap-

pearing in (X ′′)c. By Lemma 3.2.1, it is enough to consider this problem locally around

any fibre X ′′s . After a slight change of notation, we obtain the following classification:

Theorem 3.2.2. Let π : X → ∆ be a semistable degeneration of K3 surfaces, with

ωX ∼= OX . Let L = OX(H) for some effective, nef and π-flat divisor H on X, and

suppose that L induces a polarisation of degree two on the general fibre. Then:

If X0 = π−1(0) is a fibre of Type 0, then L is ample and the morphism φ : X → Xc

taking X to the relative log canonical model of the pair (X,L) is an isomorphism that

sends X0 to:

(0) A sextic hypersurface

{z2 − f6(xi) = 0} ⊂ P(1,1,1,3)[x1, x2, x3, z],

where {f6(xi) = 0} ⊂ P2 is a nonsingular curve.
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If X0 is one of the special fibres (I)-(III) then the morphism φ : X → Xc sends X0

to:

(Ih) A sextic hypersurface

{z2 − f6(xi) = 0} ⊂ P(1,1,1,3)[x1, x2, x3, z],

where {f6(xi) = 0} ⊂ P2 has at worst A-D-E singularities.

(Iu) A complete intersection

{z2 − f6(xi, y) = f2(xi) = 0} ⊂ P(1,1,1,2,3)[x1, x2, x3, y, z],

where {f2(xi) = 0} ⊂ P2 is nonsingular, f6(0, 0, 0, 1) 6= 0 and the branch curve

{f6(xi, y) = f2(xi) = 0} ⊂ P(1, 1, 1, 2) has at worst A-D-E singularities.

(II.0h) A sextic hypersurface

{z2 − f6(xi) = 0} ⊂ P(1,1,1,3)[x1, x2, x3, z],

where the curve {f6(xi) = 0} ⊂ P2 has a consecutive triple point or a quadruple

point, along with some A-D-E singularities.

(II.0u) A complete intersection

{z2 − f6(xi, y) = f2(xi) = 0} ⊂ P(1,1,1,2,3)[x1, x2, x3, y, z],

where {f2(xi) = 0} ⊂ P2 is nonsingular, f6(0, 0, 0, 1) 6= 0 and the branch curve

{f6(xi, y) = f2(xi) = 0} ⊂ P(1, 1, 1, 2) has a consecutive triple point or a quadruple

point, along with some A-D-E singularities.
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(II.1) A sextic hypersurface

{z2 − l2(xi)f4(xi) = 0} ⊂ P(1,1,1,3)[x1, x2, x3, z],

where {l(xi) = 0} ⊂ P2 is a line that intersects {f4(xi) = 0} in four distinct points

and either

(II.1a) {f4(xi) = 0} ⊂ P2 has at worst A-D-E singularities; or

(II.1b) {f4(xi) = 0} ⊂ P2 has a quadruple point.

(II.2) A sextic hypersurface

{z2 − q2(xi)f2(xi) = 0} ⊂ P(1,1,1,3)[x1, x2, x3, z],

where {q(xi) = 0} ⊂ P2 is a nonsingular quadric curve that intersects {f2(xi) = 0}

in four distinct points and {f2(xi) = 0} ⊂ P2 has at worst A-D-E singularities.

(II.3) A sextic hypersurface

{z2 − f2
3 (xi) = 0} ⊂ P(1,1,1,3)[x1, x2, x3, z],

where f3 is a nonsingular cubic.

(II.4) A complete intersection given, up to linear change of coordinates in the xi,

by

{z2 − f6(xi, y) = x2x3 = 0} ⊂ P(1,1,1,2,3)[x1, x2, x3, y, z],

where the locus {f6(x1, 0, 0, y) = 0} ⊂ P(1, 2) consists of three distinct points;

f6(0, 0, 0, 1) 6= 0; and either

(II.4a) {f6(xi, y) = xj = 0} ⊂ P(1, 1, 1, 2) has at worst A-D-E singularities for

j = 2, 3; or
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(II.4b) {f6(xi, y) = xj = 0} ⊂ P(1, 1, 1, 2) has a consecutive triple point for exactly

one choice of j ∈ {2, 3} and at worst A-D-E singularities for the other.

(III.0h) A sextic hypersurface

{z2 − f6(xi) = 0} ⊂ P(1,1,1,3)[x1, x2, x3, z],

that has exactly one of the cusp singularities listed in Proposition 3.1.9, possibly

along with some rational double points.

(III.0u) A complete intersection

{z2 − f6(xi, y) = f2(xi) = 0} ⊂ P(1,1,1,2,3)[x1, x2, x3, y, z],

where {f2(xi) = 0} ⊂ P2 is nonsingular, f6(0, 0, 0, 1) 6= 0 and this complete

intersection has exactly one of the cusp singularities listed in Proposition 3.1.9,

along with some rational double points.

(III.1) A sextic hypersurface

{z2 − l2(xi)f4(xi) = 0} ⊂ P(1,1,1,3)[x1, x2, x3, z],

where {f4(xi) = 0} ⊂ P2 has at worst A-D-E singularities; l is linear; and the

curves in P2 defined by {l(xi) = 0} and {f4(xi) = 0} intersect in two or three

distinct points, each with multiplicity ≤ 2.

(III.2) A sextic hypersurface

{z2 − q2(xi)f2(xi) = 0} ⊂ P(1,1,1,3)[x1, x2, x3, z],

where {f2(xi) = 0} ⊂ P2 has at worst A-D-E singularities; q is a quadric with

at worst nodal singularities; and the curves in P2 defined by {q(xi) = 0} and

82



3.2. Degenerations of K3 Surfaces of Degree Two

{f2(xi) = 0} intersect in two, three or four distinct points, each with multiplicity

≤ 2. Furthermore, if {q(xi) = 0} and {f2(xi) = 0} intersect in four points then q

must have a nodal singularity.

(III.3) A sextic hypersurface

{z2 − f2
3 (xi) = 0} ⊂ P(1,1,1,3)[x1, x2, x3, z],

where f3 is a singular cubic with nodal singularities.

(III.4) A complete intersection given, up to linear change of coordinates in the xi,

by

{z2 − f6(xi, y) = x2x3 = 0} ⊂ P(1,1,1,2,3)[x1, x2, x3, y, z],

where {f6(x1, 0, 0, y) = 0} ⊂ P(1, 2) consists of exactly two points, one of which

has multiplicity 2; f6(0, 0, 0, 1) 6= 0; and either

(III.4a) {f6(xi, y) = xj = 0} ⊂ P(1, 1, 1, 2) has at worst A-D-E singularities for

j = 2, 3; or

(III.4b) {f6(xi, y) = xj = 0} ⊂ P(1, 1, 1, 2) has at worst A-D-E singularities for

one choice of j ∈ {2, 3} and consists of two nonsingular curves, one of which

is double, meeting in a degenerate cusp 0 ∈ {y2(y + x2) = 0} ⊂ C for the

other.

Remark 3.2.3. We briefly comment on the relationship between this theorem and two

other classifications of semistable fibres.

Firstly, in [Fri84, Section 5], Friedman classifies the semistable fibres occurring in

a Type II degeneration of K3 surfaces of degree two. However, in his classification he

drops the assumption that H is π-flat. This allows him to twist H by components of the

central fibre X0, which enables him to make some strong assumptions about the form

of the restriction of H to X0 (see [Fri84, Theorem 2.2]). This makes his classification
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considerably simpler than ours: in fact, only cases (II.1a), (II.2), (II.3) and (II.4a)

appear. We originally considered taking this approach to our classification but, as we

shall see in Chapter 4, the π-flat assumption turns out to be quite important when we

come to explicitly construct the relative log canonical model.

Secondly, in [Sha80, Theorem 2.4], Shah classifies the semistable degenerations of

sextic curves in P2. This is closely related to our setup, because any K3 hypersurface

in P(1, 1, 1, 3) is a double cover of P2 ramified over a nonsingular sextic curve. Thus, a

semistable degeneration of K3 hypersurfaces in P(1, 1, 1, 3) corresponds to a semistable

degeneration of sextic curves in P2. There are two main differences between our clas-

sifications. The first is that Shah’s classification has far fewer distinct cases. This is

because, in the interests of constructing a good moduli space, Shah considers only those

sextics belonging to closed orbits, but we do not impose this criterion. The second is

that our classification treats the unigonal fibres differently. In Shah’s classification the

unigonal fibres are seen as double covers of P2, obtained by applying the natural projec-

tion P(1, 1, 1, 2, 3)− → P(1, 1, 1, 3). However, as was noted in Example 2.1.1, applying

this projection to a unigonal fibre gives a non-reduced fibre, which is difficult to deal

with.

Before we embark on the proof of Theorem 3.2.2, we note that the following corollary

is an immediate consequence of the classification in the theorem and the considerations

in Section 3.1.

Corollary 3.2.4. The singularities appearing in the singular fibres of the relative log

canonical model of a semistable terminal threefold fibred by K3 surfaces of degree two

are at worst semi log canonical.

We now proceed with the proof of Theorem 3.2.2. To do this, we will show that the

log canonical model

(X0)c := Proj
⊕
n≥0

H0(X0,Ln0 )
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of the pair (X0,L0), where L0 denotes the sheaf induced on X0 by L, agrees with

the central fibre (Xc)0 of πc : Xc → ∆. Furthermore we will show that, after some

elementary modifications (which do not affect the form of the relative log canonical

model, by Lemma 2.3.7) have been performed on X, the image of the natural morphism

φ0 : X0 → (X0)c can be explicitly calculated. As φ0 agrees with the restriction of φ to

X0, this will be enough to prove the theorem.

Our first step is to show that (Xc)0 and (X0)c agree. As noted above, the log

canonical model of the pair (X0,L0) is defined by the global sections H0(X0,Ln0 ) for

n > 0. On the other hand, the central fibre (Xc)0 of πc : Xc → ∆ is defined by the

localised direct images π∗(Ln)0 ⊗O∆,0
k(0) for n > 0, where k(0) is the residue field at

0 ∈ ∆. The fact that these two maps agree will follow from:

Lemma 3.2.5. For all n > 0 and all i > 0, suppose that Riπ∗(Ln) = 0 and π∗(Ln) is

locally free. Then the natural maps

π∗(Ln)0 ⊗O∆,0
k(0) −→ H0(X0,Ln0 )

are isomorphisms for all n > 0.

Proof. By [BS76, Corollary III.3.7] and [BS76, Corollary III.3.10], the conditions of the

lemma imply that the natural maps

π∗(Ln)0 −→ H0(X0,Ln0 )

are surjective. But, by [BS76, Theorem III.3.4], this is equivalent to the natural maps

π∗(Ln)0 ⊗O∆,0
k(0) −→ H0(X0,Ln0 ),

being isomorphisms, as required.

85



Chapter 3. Fibres of the Relative Log Canonical Model

Note that the assumption that Riπ∗(Ln) = 0 for all i > 0 and all n > 0 follows from

Corollary 2.4.10 and Lemma 3.2.1, and the assumption that π∗(Ln) is locally free for all

n > 0 follows from Lemma 1.3.4 and Lemma 3.2.1, so the consequences of the lemma

hold and (Xc)0 and (X0)c agree.

We are now ready to begin analysing the different cases. As the full proof is rather

long and the cases are not covered in order, for ease of cross-referencing the proof of

each case will be marked by the number of that case in bold face. We begin with the

easiest cases: those of fibres of Types 0, Ih and Iu.

(3.2.2) Case 0. We begin by considering fibres of Type 0. In this case L is π-ample,

so the morphism φ : X → Xc is an isomorphism. It just remains to calculate an explicit

form for the image of X0 under φ.

By Lemma 3.2.5, the restriction of φ to X0 agrees with φ0. So, since L0 is am-

ple, by Example 1.1.4, φ0 is an isomorphism onto a nonsingular sextic hypersurface in

P(1, 1, 1, 3).

Next, let π : X → ∆ be a degeneration of Type Ih or Iu, and let L be defined as in

the statement of Theorem 3.2.2. Then Lemma 3.2.5 shows that the restriction of L to

the central fibre is well behaved, so we can continue with the analysis of the cases.

(3.2.2) Case Ih. We consider fibres of Type Ih first. Here X0 is a nonsingular K3

surface and the restriction L0 of L to X0 is generated by its global sections but is not

ample. However, by construction it must be nef. Furthermore L0.L0 = 2 so, by [MM07,

Corollary 2.3.38], L0 is also big. Hence, by Example 1.1.5, φ0 is a morphism onto a

sextic hypersurface {z2 − f6(xi) = 0} ⊂ P(1,1,1,3)[x1, x2, x3, z] that has at worst rational

double point singularities. Such singularities can only arise from A-D-E singularities in

the branch curve f6(xi) = 0.

(3.2.2) Case Iu. It makes sense to consider fibres of Type Iu next, as these are

quite similar to the Type Ih fibres. Here X0 is a nonsingular K3 surface and L0 is
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not generated by its global sections. In this case, by Example 1.1.5, φ0 maps X0 to a

complete intersection {z2 − f6(xi, y) = f2(xi) = 0} ⊂ P(1,1,1,2,3)[x1, x2, x3, y, z], where

f6(0, 0, 0, 1) 6= 0. The only curves contracted by φ0 are (−2)-curves, which result in at

worst rational double point singularities. These singularities can only arise from A-D-E

singularities in the branch curve {f6(xi, y) = f2(xi) = 0} ⊂ P(1, 1, 1, 2) and the vertex

of the quasismooth cone {f2(xi) = 0} ⊂ P(1, 1, 1, 2).

The Type II and Type III fibres are considerably more complicated than those

already covered, so will be discussed in their own sections. Before we can do this,

however, we will need to collect some results on the components of such fibres.

3.3 Components of Degenerate Fibres

By the classification of Kulikov models (Theorem 2.3.5), the central fibre in a Type II

or III degeneration of K3 surfaces is a union of rational and elliptic ruled components

meeting transversely along a set of double curves. In this section we will study the

interaction of the polarisation bundle L with these components.

In order to do this, we begin by fixing some notation. Let π : X → ∆ be a degenera-

tion of K3 surfaces with X0 := π−1(0) a fibre of Type II or III. Write X0 = V0 ∪ · · · ∪Vr

where the Vi are the irreducible components of X0 and we assume that the Vi have been

normalised. Let Dij denote the double curve Vi ∩ Vj and let Di =
⋃
j Dij denote the

double locus on Vi. Let L denote a line bundle that induces a polarisation of degree

two on a general fibre and let H denote an effective, nef and π-flat divisor in the linear

system defined by L. Finally, let Hi denote the effective (or zero) divisor obtained by

intersecting the divisor H with the component Vi.

To study the behaviour of the polarisation on Vi, we follow Shepherd-Barron [SB83b]

and start by separating the Vi into three sets according to the properties of Hi. We

will call a curve C ⊂ Vi a 0-curve if Hi.C = 0. Then Vi will be called a 0-surface if
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it contains only finitely many 0-curves; a 2-surface if Hi is numerically trivial; and a

1-surface if it contains a pencil of 0-curves but is not a 2-surface. Note that these classes

are mutually exclusive and that, by [SB83b, Proposition 2.3], every component of X0 is

either a 0-, 1- or 2-surface.

This classification will be useful because, as we shall see later, the map φ to the

relative log canonical model of the pair (X,L) defines a birational morphism on each

0-surface, contracts each 1-surface to a curve and contracts each 2-surface to a point.

This observation will allow us to calculate the possible images of X0 under φ by studying

the possible configurations of 0-, 1- and 2-surfaces that can occur in it.

The following result about 0-, 1- and 2-surfaces follows easily from [SB83b, Propo-

sition 2.3]:

Proposition 3.3.1. Suppose that Vi and Hi are defined as above. Then

(i) If Vi is a 1-surface, then the pencil of 0-curves on Vi forms a ruling.

(ii) If Vi contains a pencil of 0-curves and another 0-curve that does not lie in this

pencil, then Vi is a 2-surface.

(iii) If Vi contains an effective divisor E that has E2 > 0 and Hi.E = 0, then Vi is

a 2-surface.

Proof. (i) and (ii) are immediate from [SB83b, Proposition 2.3]. (iii) follows easily from

the Hodge Index Theorem.

In addition to this, we have the following information about 0-surfaces:

Lemma 3.3.2. Vi is a 0-surface if and only if H2
i > 0. Furthermore, this implies that

any 0-surface is projective.

Proof. First assume that Vi is a 0-surface. Then H2
i > 0 by [SB83b, Lemma 2.8].

Next, assume that H2
i > 0. Then Hi cannot be numerically trivial, so Vi is not a

2-surface. So suppose that Vi is a 1-surface. Then, by Proposition 3.3.1, Vi is ruled and
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the pencil of 0-curves form a ruling. Let F be any such 0-curve. Then F 2 = 0 and,

since H2
i > 0, the Hodge Index Theorem implies that F is numerically equivalent to 0.

But F is a fibre of a ruling, so this cannot occur. Thus, Vi is not a 1- or 2-surface so,

by [SB83b, Proposition 2.3], it must be a 0-surface.

Finally, to show that Vi is projective, note that Hi is nef and, since Vi is Kähler and

H2
i > 0, by [MM07, Corollary 2.3.38] it is also big. Hence, by [MM07, Theorem 2.2.15],

Vi is a Moishezon manifold and so, by [MM07, Theorem 2.2.26], Vi is projective.

For the rest of this section, we must separate the cases where the components under

consideration are rational or elliptic ruled. This distinction will enable us to get much

more information about the components themselves and the polarisation divisors on

them.

3.3.1 Rational Components

In this subsection we will perform a brief study of the rational components occurring in

the central fibre of a Kulikov model of a degeneration of K3 surfaces. Note that such

components can appear in either Type II or Type III degenerations, and as such are

much more general than the elliptic ruled components studied later. To study these

components, we begin with a brief digression on the theory of anticanonical pairs.

Definition 3.3.3 [Fri83, 1]. An anticanonical pair (V,D) consists of a rational surface

V and a reduced section D ∈ |−KV | (which is necessarily connected).

Friedman [Fri83] proves several results on anticanonical pairs that will be very useful

to us. We state these below:

Lemma 3.3.4 [Fri83, Lemma 3]. If (V,D) is an anticanonical pair and C is an irre-

ducible curve on V which is not a component of D, then:

(1) If C2 < 0, then C is smooth rational and either
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(1.1) C2 = −2, C.D = 0 or

(1.2) C2 = −1, C.D = 1.

(2) If C2 = 0, then either

(2.1) C is smooth rational, C.D = 2 or

(2.2) pa(C) = 1 and C.D = 0.

Theorem 3.3.5 [Fri83, Theorem 10]. Let H be effective and nef on V , with (V,D) an

anticanonical pair, and suppose that no component of D is a fixed component of |H|.

Write |H| = |H|f + |H|m, where |H|f is the fixed part of |H| and |H|m has no fixed

components. Then:

(1) |H|f 6= 0 only if H2 > 0; in this case |H|f is either 0 or

(1.1) |H|f = C smooth rational, C2 = −2, with |H|m = kE for smooth elliptic E

with E2 = E.D = 0 and C.E = 1. Necessarily k ≥ 2.

(1.2) |H|f =
∑n

i=1Ci, where C2
i = −2 for 1 ≤ i < n, C2

n = −1, with Ci.Ci+1 = 1,

Ci.Cj = 0 for j 6= i ± 1 or i. In this case, |H|m either contains smooth

irreducible members and has |H|m.C1 = 1 or is of the form kE as in (1.1)

and has |H|m.C1 = k. Furthermore, |H|m.Ci = 0 for all i > 1.

(2) If |H| has no fixed components, |H| has base points if and only if H.D = 1,

in which case p = H.D is the unique base point of |H| and |H| contains smooth

members.

(3) If H2 = 0 then either

(3.1) H = kC for C smooth rational with C2 = 0, C.D = 2, and the morphism to

projective space defined by |C| maps onto P1, exhibiting V as a ruled surface.

(3.2) H = kE, where E is as in (1.1).
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(4) If H2 > 0, then |nH| has no fixed components or base locus for n ≥ 2. If n ≥ 3,

the morphism to projective space defined by |nH| is birational onto its image and

contracts exactly those curves C with H.C = 0.

The reason that this is useful to us becomes clear from the following lemma:

Lemma 3.3.6. Let Vi be a rational component of the central fibre X0 in a degeneration

of K3 surfaces π : X → ∆ of Type II or III, and let Di be the locus of double curves on

Vi. Then (Vi, Di) is an anticanonical pair.

Proof. As Di is reduced, we just need to show that Di ∈ |−KVi |. This is stated without

proof in [Per77], we provide a proof here for completeness. Since Vi is a component

in the central fibre X0 of a Kulikov model π : X → ∆, by adjunction we get that

KVi ∼ (KX + Vi)|Vi ∼ Vi.Vi. Next, note that since X0 ∼ Xs for Xs a generic fibre,

X0.Vi ∼ 0. So Vi.Vi ∼ Vi.(Vi − X0) ∼ Vi.(−
∑

i 6=j Vj), where Vj runs over the other

components of X0. But this intersection is precisely −Di.

We conclude this subsection with a result that will allow us to calculate the ranks of

the cohomology groups of a divisor on an anticanonical pair. This will prove invaluable

when we want to calculate the image of such a pair under the map to its log canonical

model.

Proposition 3.3.7. Let (V,D) be an anticanonical pair. Then:

(a) If C is a smooth irreducible curve on V satisfying C2 ≥ 0 and C.D > 0,

h0(V,OV (nC)) =
1

2
C2n2 +

(
1

2
C2 − pa(C) + 1

)
n+ 1.

(b) If E is an effective, nef divisor on V with E2 > 0 and E ∩D = ∅,

h0(V,OV (nE)) =
1

2
E2n2 + 2.
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Proof. We begin by proving (a). Consider the exact sequence for n ≥ 1:

0 −→ OV ((n− 1)C) −→ OV (nC) −→ OC(nC) −→ 0

This gives rise to the long exact sequence of cohomology

0 −→ H0(V,OV ((n− 1)C)) −→ H0(V,OV (nC)) −→ H0(C,OC(nC))

−→ H1(V,OV ((n− 1)C)) −→ H1(V,OV (nC)) −→ H1(C,OC(nC))

−→ · · · .

We will use this sequence and induction on n to prove the result we want. Firstly note

that, by adjunction and Serre duality,

H1(C,OC(nC)) ∼= H0(C,OC(−D − (n− 1)C)).

But this second group is zero, as degC(−D − (n− 1)C) < 0. Secondly, H1(V,OV ) = 0

as V is rational. So, by induction, H1(V,OV (nC)) = 0 for all n.

Hence, from the long exact sequence above, we get that

h0(V,OV (nC)) = h0(V,OV ((n− 1)C)) + h0(C,OC(nC)).

Noting that h0(V,OV ) = 1, we will be done by induction on n if we can show that

h0(C,OC(nC)) = nC2 + 1 − pa(C). But this follows immediately from the Riemann-

Roch theorem for curves and the vanishing of H1(C,OC(nC)).

Next we prove (b). Note that V is a 0-surface with respect to E, so it must be

projective by Lemma 3.3.2. Thus we may use the Riemann-Roch Theorem for surfaces

to calculate h0(V,OV (nE)) for n ≥ 0.
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We begin by calculating hi(V,OV (nE)) for i = 1, 2. By Serre duality, we have

H i(V,OV (nE)) ∼= H2−i(V,OV (−nE −D)).

We will calculate this second group by means of the exact sequence

0 −→ OV (−nE −D) −→ OV (−nE) −→ OD(−nE) −→ 0

which gives rise to the long exact sequence of cohomology

0 −→ H0(V,OV (−nE −D)) −→ H0(V,OV (−nE)) −→ H0(D,OD(−nE))

−→ H1(V,OV (−nE −D)) −→ H1(V,OV (−nE)) −→ · · · .

Now, E is nef by assumption. Furthermore, by [KM98, Proposition 2.61], the as-

sumption E2 > 0 implies that E is big. So, by the generalised Kodaira vanishing

theorem [KM98, Theorem 2.70],

H i(V,OV (−nE)) = 0

for all i < 2. This immediately gives H0(V,OV (−nE −D)) = 0 and

H1(V,OV (−nE −D)) ∼= H0(D,OD(−nE)).

However, as E ∩D = ∅, we have OD(−nE) ∼= OD and so, as D is connected,

h0(D,OD(−nE)) = h0(D,OD) = 1.

Putting this into the Riemann-Roch Theorem for surfaces, noting that χ(OV ) = 1
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(as V is rational), we get

h0(V,OV (nE))− 1 = 1 +
1

2
E2n2.

Rearranging gives the desired result.

This concludes the analysis of the rational components.

3.3.2 Elliptic Ruled Components

Finally, we will perform a brief study of the elliptic ruled components occurring in the

central fibre of a Kulikov model of a degeneration of K3 surfaces. Our aim is to study

the structure of these components and to prove analogues of some of the results on

rational surfaces quoted in Subsection 3.3.1.

By the classification of Kulikov models (Theorem 2.3.5), elliptic ruled components

can only appear in a degeneration of Type II. Furthermore, each elliptic ruled component

in a Type II degeneration contains precisely two smooth elliptic double curves that form

sections for the ruling.

We begin by studying the general form of a minimal elliptic ruled surface.

Lemma 3.3.8. Let V be a minimal analytic surface, C a smooth curve, and p : V → C

a morphism with generic fibre isomorphic to P1. Then V is C-isomorphic to a projective

space bundle PC(E), where E is some algebraic rank 2 vector bundle on C. In particular,

this implies that V is projective.

Proof. This is a special case of [BHPvdV04, Proposition V.4.1].

This description of a minimal elliptic ruled surface can be used to get a description

of the Picard group of such a surface.
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Lemma 3.3.9 [Bea96, Proposition III.18]. Let V = PC(E) be a minimal ruled surface

over C and let p : V → C be the structural morphism. Write s for the class of the sheaf

OV (1) in Pic(V ) (or in H2(V,Z)). Then

(i) Pic(V ) = p∗Pic(C)⊕ Zs.

(ii) H2(V,Z) = Zs⊕ Zf , where f is the class of a fibre.

(iii) s2 = deg(E), f2 = 0 and s.f = 1.

(iv) [KV ] = −2s+ (deg(E) + 2g(C)− 2)f in H2(V,Z).

For the remainder of this subsection, Vi will denote an elliptic ruled surface that is a

component in the central fibre of a degeneration π : X → ∆ of Type II and Di will denote

the double locus on Vi. Write Di as D′i + D′′i , for D′i, D
′′
i smooth irreducible elliptic

sections. We will further assume that Vi is minimal (i.e. Vi contains no (−1)-curves).

Using the description of Lemma 3.3.8, without loss of generality we can take C ∼= D′i

and p : V → D′i to be the natural projection. Then, by the proof of [Har77, Proposition

V.2.2], OVi(D′i) ∼= OVi(1) and so, using the notation of Lemma 3.3.9, [D′i] = s in

H2(Vi,Z). We have:

Lemma 3.3.10. With notation as above, KVi ∼ −Di, so [D′′i ] = s−deg(E)f in H2(V,Z)

and (D′′i )2 = −(D′i)
2.

Proof. The statement about KVi is proved in exactly the same way as Lemma 3.3.6.

Furthermore, the statements about D′′i follow immediately from Lemma 3.3.9 and the

assumption that [D′i] = s.

Next, we will study the interaction between the elliptic ruled components and the

polarisation divisor. For this we will use the mechanics of 0-, 1- and 2-surfaces developed

before. So suppose that H is an effective, nef and flat divisor on X that induces

a polarisation of degree two on the general fibre of π : X → ∆. Let Hi denote the

intersection of H with Vi. Then we have:
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Lemma 3.3.11. With notation as above:

(i) If Vi is a 1-surface, then Hi is a sum of fibres and Hi.D
′
i = Hi.D

′′
i .

(ii) if Vi is a 0-surface, then [Hi] = as+ bf in H2(Vi,Z), for a > 0 and b ≥ 0.

Proof. Consider (i) first. By Proposition 3.3.1, we know that the pencil of 0-curves on

Vi forms a ruling. Let C be a general member of this linear system. Then, by Lemma

3.3.9, [C] = f in H2(Vi,Z). Write [Hi] = as+ bf in H2(Vi,Z), for some a, b ∈ Z. Then

0 = Hi.C = (as+ bf).f = a which implies that [Hi] = bf , i.e. that Hi is a sum of fibres.

To complete the proof of (i), note that since [Hi] = bf , we have Hi.D
′
i = b = Hi.D

′′
i .

Now consider (ii). As before, write [Hi] = as+ bf for some a, b ∈ Z. Consider first

Hi.D
′′
i = (as+ bf).(s− deg(E)f)

= deg(E)a+ b− deg(E)a

= b.

As D′′i is irreducible and Hi is nef, this implies that b ≥ 0.

Next, let F denote a fibre of the ruling on Vi. Then Hi.F = a so, as F is irreducible

and Hi is nef, a ≥ 0. Finally, note that H2
i = a2deg(E) + 2ab > 0 by Lemma 3.3.2, so

a 6= 0.

Finally, we conclude this subsection with a pair of results that will prove invaluable

when calculating the maps induced by certain linear systems on a minimal elliptic ruled

component.

Proposition 3.3.12. Suppose that Vi is a minimal elliptic ruled component in a degen-

eration of Type II. Let D′i and D′′i denote the elliptic double curves on Vi. Suppose that
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(D′i)
2 > 0. Then

h0(Vi,OVi(nD′i)) =
1

2
(D′i)

2(n2 + n) + 1

h1(Vi,OVi(nD′i)) = 1

h2(Vi,OVi(nD′i)) = 0

for all n ≥ 0.

Proof. Consider the short exact sequence

0 −→ OVi(nD′i −D′′i ) −→ OVi(nD′i) −→ OD′′i (nD′i) −→ 0.

From this, we get the long exact sequence of cohomology

· · · −→ H1(Vi,OVi(nD′i −D′′i )) −→ H1(Vi,OVi(nD′i)) −→ H1(D′′i ,OD′′i (nD′i))

−→ H2(Vi,OVi(nD′i −D′′i )) −→ H2(Vi,OVi(nD′i)) −→ 0.

Now, by Lemma 3.3.10, KVi ∼ −D′i −D′′i , so by Serre duality

Hj(Vi,OVi(nD′i −D′′i )) = H2−j(Vi,OVi(−(n+ 1)D′i)).

Next note that, as D′i is irreducible and has (D′i)
2 > 0, we have D′i.E ≥ 0 for all

effective divisors E. So D′i is nef. Furthermore, by [KM98, Proposition 2.61], D′i is also

big. Hence, by the generalised Kodaira vanishing theorem [KM98, Theorem 2.70], we

have that

H2−j(Vi,OVi(−(n+ 1)D′i)) = 0

for all n ≥ 0 and j > 0. This immediately implies that H2(Vi,OVi(nD′i)) = 0 for n ≥ 0
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and

H1(Vi,OVi(nD′i)) ∼= H1(D′′i ,OD′′i (nD′i)).

Furthermore, as D′i ∩D′′i = ∅, we have that OD′′i (nD′i)
∼= OD′′i . So

h1(Vi,OVi(nD′i)) = h1(D′′i ,OD′′i ) = 1

for n ≥ 0.

It just remains to calculate h0(Vi,OVi(nD′i)). By the calculation above and the

Riemann-Roch theorem for surfaces we have

h0(Vi,OVi(nD′i))− 1 = χ(OVi) +
1

2

(
(nD′i)

2 − nD′i.KVi

)
.

By Lemma 3.3.10, we know that nD′i.KVi = −n(D′i)
2. Furthermore, from the proper-

ties of minimal ruled surfaces [Bea96, Proposition III.21], we know that χ(OVi) = 0.

Rearrangement then proves the required formula for h0(Vi,OVi(nD′i)).

Corollary 3.3.13. Under the assumptions of Proposition 3.3.12, the linear system

|nD′i| has no fixed components for n ≥ 1 and no base points for n ≥ 2. If n ≥ 3,

the morphism φnD′i corresponding to the linear system |nD′i| is birational onto its im-

age.

Proof. (Based upon the proof of [Fri83, Theorem 10]) To see that |D′i| has no fixed

components, note that Proposition 3.3.12 implies that the dimension of the linear system

|D′i| is at least 1. So we may choose an effective divisor Z ∈ |D′i| that is not equal to D′i.

But, as D′i is an irreducible curve, Z and D′i cannot have any components in common.

Now consider the short exact sequence

0 −→ OVi((n− 1)D′i) −→ OVi(nD′i) −→ OD′i(nD
′
i) −→ 0.
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This gives rise to the long exact sequence of cohomology

0 −→ H0(Vi,OVi((n− 1)D′i) −→ H0(Vi,OVi(nD′i)) −→ H0(D′i,OD′i(nD
′
i))

−→ H1(Vi,OVi((n− 1)D′i) −→ H1(Vi,OVi(nD′i)) −→ H1(D′i,OD′i(nD
′
i))

−→ · · · .

Furthermore, since degD′i(nD
′
i) = n(D′i)

2 > 0 and KD′i
∼ 0, Kodaira vanishing gives

H1(D′i,OD′i(nD
′
i)) = 0.

Thus, the map H1(Vi,OVi((n − 1)D′i) → H1(Vi,OVi(nD′i)) is surjective. But, by

Proposition 3.3.12, both of these groups have rank 1 for n ≥ 2. So this map must be an

isomorphism and the map H0(Vi,OVi(nD′i))→ H0(D′i,OD′i(nD
′
i)) must be surjective.

Therefore the restriction of |nD′i| to D′i defines a complete linear system and, as

degD′i(nD
′
i) ≥ 2 for n ≥ 2, [Har77, Corollary IV.3.2] implies that this complete linear

system is base point free. So |nD′i| must be base point free for n ≥ 2 as well.

Finally, as |nD′i| has no fixed components or base points for n ≥ 2, by Bertini’s

Theorem we see that a general member Z ∈ |nD′i| is smooth. Furthermore, the ad-

junction formula gives OZ(nD′i) = OZ(KZ + D′i + D′′i ) and, if n ≥ 3, we must have

degZ(KZ + D′i + D′′i ) ≥ 2g(Z) + 1. So, by [Har77, Corollary IV.3.2], OZ(nD′i) is very

ample on Z for n ≥ 3, so φnD′i is birational onto its image.

This completes the analysis of the elliptic ruled components.

3.4 Type II Fibres

In this section we shall classify the Type II fibres. We begin by setting up some notation.

Let π : X → ∆ be a degeneration of K3 surfaces with X0 = π−1(0) a fibre of Type II.

Write X0 = V0 ∪ · · · ∪ Vr, with V1, . . . , Vr−1 elliptic ruled and V0 and Vr rational. Let

Di denote the elliptic double curve Vi−1 ∩ Vi. As usual, L denotes a line bundle that

99



Chapter 3. Fibres of the Relative Log Canonical Model

induces a polarisation of degree two on a general fibre and H denotes an effective, nef

and π-flat divisor in the linear system defined by L.

We begin by making elementary modifications to get X and H into a special form

that will make it easier for us to perform calculations with them:

Theorem 3.4.1. Let π : X → ∆ be a Type II degeneration of K3 surfaces and H be an

effective, nef and π-flat divisor on X which induces an polarisation of degree two on the

generic fibre. Then after suitable elementary modifications have been performed on X,

we have

(i) H is transformed into an effective, nef and π-flat divisor;

(ii) for each 1 ≤ i ≤ r − 1, the surface Vi is minimal ruled;

(iii) let Hi denote the effective (or zero) divisor on Vi obtained by intersecting with

H. Then no component of the double locus on Vi is fixed in the linear system |Hi|.

Proof. We begin by proving part (ii). In order to do this we apply a modification

of Shepherd-Barron’s proof of [SB83b, Theorem 1], due originally to Friedman [Fri84,

Theorem 2.2]. If V1 is elliptic ruled and not minimal, there are (†)-curves C meeting

D2 which may be flipped to V2 by a series of Type I modifications. Repeat this until V1

is minimal. Similarly, if V2 is elliptic ruled and not minimal, we may flip all (†)-curves

to V3, and so on. Eventually, we obtain a birational model X ′ of X with V ′1 , . . . , V
′
r−1

minimal ruled. This proves part (ii).

Next we prove part (i). Let H ′ denote the strict transform of H on X ′. Then, as all

elementary modifications occur in codimension 2, H ′ is still effective and flat over ∆.

To prove (i) we need to show that H ′ can be made nef. In order to do this, we apply

the following modification of the algorithm of [SB83b, Theorem 1] to H ′:

(1) Perform Type 0 modifications along all (§)-curves C lying in V ′0 or V ′r such that

H ′.C < 0.
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(2) Given a (†)-curve C ′ on V ′0 or V ′r such that H ′.C ′ < 0, make a series of Type

I modifications to flip C ′ to the opposite end, i.e. to either V ′r or V ′0 , then repeat

step (1).

The proof of [SB83b, Theorem 1] shows that the algorithm above terminates. The result

is a birational model X ′′ of X and a divisor H ′′ on X ′′ that satisfy (i) and (ii) in the

statement of the theorem.

The proof of (iii) is somewhat more difficult. We proceed by contradiction. Let Hi

be the divisor on Vi obtained by intersecting with H and suppose that Dj is a double

curve on Vi (so j ∈ {i, i + 1}) that is fixed in |Hi|. We aim to show that this implies

that (Dj |Vi)2 = 0 and Hi.Dj = 0. For then, in the notation of Section 3.3, Dj |Vi is

a nonsingular elliptic 0-curve with self-intersection number 0, which cannot exist by

[SB83b, Lemma 2.2].

So, in order to prove (iii), we need to show that (Dj |Vi)2 = 0 and Hi.Dj = 0. The

first of these will follow from the triple point formula if we can show that Dj has non-

positive self-intersection on both of the components in which it lies. The first step to

proving this is to show that Dj is fixed in both of the components in which it lies.

Remark 3.4.2. We note that the next few results are proved in considerably more

generality than we need in order to prove Theorem 3.4.1. However, the same results

will also be used when we come to analyse the Type III fibres in the next section, and

we will need the greater generality there.

Lemma 3.4.3. Let Vi and Vj be two distinct surfaces meeting along a double curve Dij.

Let L be an invertible sheaf on V = Vi ∪ Vj, such that there exist sections of H0(V,L)

which are nonvanishing on Vk for each k. Let Hk denote an effective divisor on Vk

defined by a nonvanishing section of H0(V,L). Suppose that Dij is a fixed component

of |Hi| on Vi. Then Dij is also a fixed component of |Hj | on Vj.

Proof. For a contradiction, suppose that Dij is fixed in |Hi| but not in |Hj |. Then there
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exists a section s ∈ H0(V,L) such that s restricted to Vj does not vanish on Dij . But

then s restricted to Vi defines a divisor linearly equivalent to Hi that does not vanish

on Dij . However, this contradicts Dij being a fixed component of |Hi|.

Applying this lemma with L equal to the restriction of OX(H) to X0, and noting

that this restriction defines the complete linear system |Hi| on each component Vi of X0

by Lemma 3.2.5, we see that Dj is fixed in both of the components in which it lies. The

fact that it has non-positive self-intersection on both of these components will follow

from another lemma:

Lemma 3.4.4. Let Vi be a normalised component of the central fibre X0 in a degenera-

tion of K3 surfaces π : X → ∆ of Type II or III, and let Di be the locus of double curves

on Vi. Let |Hi| be a linear system on Vi which contains in its fixed locus an irreducible

component Dij of Di. Then D2
ij ≤ 0, and this inequality is strict if π : X → ∆ is of

Type III and Dij is smooth.

Proof. Suppose for a contradiction that D2
ij > 0 (or that D2

ij ≥ 0 in the case where

π : X → ∆ is of Type III and Dij is smooth). We will show that this implies that

h0(Vi,OVi(Dij)) ≥ 2, so that Dij moves in a linear system of dimension ≥ 1 and hence

cannot be fixed.

First consider the case where Vi is elliptic ruled. Then Proposition 3.3.12 implies

that h0(Vi,OVi(Dij)) = D2
ij +1 ≥ 2 when D2

ij > 0, and the lemma is proved in this case.

Next, consider the case when Vi is rational and π : X → ∆ is of Type II. Then an

application of Proposition 3.3.7(a) with C = Dij irreducible and elliptic shows that

h0(Vi,OVi(Dij)) = D2
ij + 1 ≥ 2 when D2

ij > 0, proving the lemma in this case.

Third, consider the case when Vi is rational, π : X → ∆ is of Type III and Dij is a

rational nodal curve. Then, by [Fri83, Lemma 5], h0(Vi,OVi(Dij)) ≥ 1 +D2
ij ≥ 2 when

D2
ij > 0, as required in this case.

Finally, consider the case when Vi is rational, π : X → ∆ is of Type III and Dij is
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smooth. Then Dij .Di = D2
ij+2 > 0 for D2

ij ≥ −1, so we may apply Proposition 3.3.7(a)

with C = Dij smooth, irreducible and rational to get h0(Vi,OVi(Dij)) = D2
ij + 2 ≥ 2

exactly when D2
ij ≥ 0. This completes the proof of the lemma.

Now the fact that (Dj |Vi)2 = 0 follows from Lemma 3.4.3, Lemma 3.4.4 and the

triple point formula. So it just remains to show that Hi.Dj = 0. This will follow from:

Proposition 3.4.5. Let Vk be the normalised components of the central fibre X0 in a

degeneration of K3 surfaces π : X → ∆ of Type II or III and let Dk denote the locus

of double curves on Vk. Let L be a nef line bundle on X0 such that L.L = 2 and there

exist nonvanishing sections in H0(Vk,L) for all k. Let Hk denote a divisor defined on

Vk by such a section. Then if an irreducible component Dij = Vi ∩ Vj of Di is in the

fixed locus of |Hi| for some i, it must satisfy Hi.Dij = 0.

Proof. Before we begin with the proof, we make a remark about non-normal compo-

nents. If Vi is a non-normal component in X0 it intersects itself along a smooth rational

curve Dii. When we normalise it we find that Dii has two preimages. As these preimages

will usually be considered alongside double curves that lie in two different components,

we will abuse notation and refer to them as Dij |Vi and Dij |Vj , where it is understood

that if i and j are equal these refer to the disjoint curves in the normalisation. Finally,

we note that in this case if one of these curves is in the fixed locus of |Hi| then the other

must also be.

We now proceed with the proof. Suppose Dij is in the fixed locus of |Hi|. Then,

using Lemma 3.4.3 if i 6= j, we see that Dij is also in the fixed locus of |Hj |. So, by

Lemma 3.4.4, (Dij |Vi)2 ≤ 0 and (Dij |Vj )2 ≤ 0, and these inequalities are strict when

the degeneration π : X → ∆ is Type III and Dij is smooth. Putting this into the triple
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point formula

(Dij |Vi)2 + (Dij |Vj )2 = −Tijk

=


0 if Type II or Type III with Dij nodal

−2 if Type III with Dij smooth

we get that (Dij |Vi)2 = (Dij |Vj )2 = 0 in the first case and (Dij |Vi)2 = (Dij |Vj )2 = −1 in

the second case.

Now write the linear system |Hi| as

|Hi| = |Hi|m + |Hi|f ,

where |Hi|f is the fixed part of |Hi| and |Hi|m has no fixed components. Note that

|Hi|m and |Hi|f are effective or trivial and |Hi|m is nef.

Suppose that we are on a component Vi with H2
i = 0. Then

0 = H2
i = |Hi|2m + |Hi|m.|Hi|f +Hi.|Hi|f .

As Hi and |Hi|m are nef, all terms on the right hand side of this equation are zero. Fur-

thermore, by effectiveness of |Hi|f , we have that Hi.F = 0 for all irreducible components

F of |Hi|f . Hence if Dij is fixed in |Hi|, then Hi.Dij = 0.

So we are left with the case where Dij is the intersection of two components Vi and

Vj with H2
i > 0 and H2

j > 0. As L.L = 2 on X0, this can only occur if H2
i = H2

j = 1,

or if i = j and H2
i = 2 (in which case Vi is the normalisation of a surface that intersects

itself). In these cases we can explicitly analyse the form of |Hi| on Vi.

Let |Hi| be a linear system on Vi, with H2
i = 1 or 2 and Dij be a double curve that
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is a fixed component of |Hi|. As above, write

H2
i = |Hi|2m + |Hi|m.|Hi|f +Hi.|Hi|f . (3.1)

If Hi.|Hi|f = 0, we are done as above. So assume Hi.|Hi|f > 0. We will show that

this implies that |Hi|2f > 0 and |Hi|m.|Hi|f = 0, then use these expressions to derive a

contradiction.

If H2
i = 1, then Hi.|Hi|f = 1 and so

1 = Hi.|Hi|f = |Hi|m.|Hi|f + |Hi|2f .

As |Hi|m is nef, by equation (3.1) necessarily |Hi|m.|Hi|f = 0. So |Hi|2f = 1.

If H2
i = 2 then necessarily i = j, so Dij |Vi and Dij |Vj both lie in Vi and so are both

in |Hi|f . In this case, write

|Hi|f = a0(Dij |Vi) + a1(Dij |Vj ) +

m∑
k=2

akFk,

for irreducible curves Fk and integers ak with ak > 0. Then

Hi.|Hi|f = a0Hi.(Dij |Vi) + a1Hi.(Dij |Vj ) +
m∑
k=2

akHi.Fk.

As Hi is nef, all of the terms in the right hand side of this equation are non-negative.

Furthermore, we may assume Hi.(Dij |Vi) > 0, otherwise we are done. But we know

Hi.(Dij |Vi) = Hi.(Dij |Vj ), so Hi.|Hi|f ≥ 2. Therefore, using equation (3.1) and the fact

that |Hi|m is nef, Hi.|Hi|f = 2 and |Hi|m.|Hi|f = 0. Then as

2 = Hi.|Hi|f = |Hi|m.|Hi|f + |Hi|2f ,

we must have |Hi|2f = 2.
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In either case |Hi|2f > 0 and |Hi|m.|Hi|f = 0. Note further that, for any component

F of |Hi|f , we must have |Hi|m.F = 0 as |Hi|f is effective and |Hi|m is nef. So, for all

components F of |Hi|f ,

|Hi|f .F = |Hi|m.F + |Hi|f .F = Hi.F ≥ 0

as Hi is nef. Therefore as |Hi|f is effective, it must be nef.

Now consider the case where Vi is elliptic ruled. Then |Hi|2f = 1, as no component

may intersect itself in a degeneration of Type II. By Lemma 3.3.9, [|Hi|f ] = as+ bf in

H2(Vi,Z), where s is the class of a section and f is the class of a fibre. Furthermore, as

(Dij |Vi)2 = 0, we have that s2 = 0. So 1 = |Hi|2f = 2ab by Lemma 3.3.9 again. But a

and b are integers, so this cannot occur. Thus we obtain a contradiction, so Hi.|Hi|f = 0

and we are done as above.

Finally, consider the case where Vi is rational. Then |Hi|f is effective, |Hi|2f > 0

and |Hi|f .Di ≥ 0 as |Hi|f is nef. So, by [Fri83, Lemma 5], h0(Vi,OVi(|Hi|f )) ≥ 2,

contradicting |Hi|f being fixed.

Applying this proposition with L equal to the restriction of OX(H) to X0 gives

Hi.Dj = 0, as required. This completes the proof of Theorem 3.4.1.

So let π : X → ∆ be a degeneration of Type II and let H be an effective, nef and

π-flat divisor on X which induces a polarisation of degree two on the general fibre.

Suppose that we have performed a series of elementary modifications on X so that the

conclusions of Theorem 3.4.1 hold; by Lemma 2.3.7 this does not affect the form of the

relative log canonical model. Furthermore, as H is still nef, the map φ : X → Xc is

still a morphism and by Lemma 3.2.5 the restriction of φ to X0 agrees with the map

φ0 : X0 → (X0)c. To prove the Type II case of Theorem 3.2.2, all that remains is to

calculate the image of φ0 : X0 → (X0)c.
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Let Hi denote the intersection of H with Vi. Note that Hi is effective and nef. The

morphism

φVi : Vi −→ Proj
⊕
n≥0

H0(Vi,OVi(nHi))

defined by the linear systems |nHi| for n ≥ 0 agrees with the morphism defined by the

restriction of φ0 to Vi. We can gather information about these morphisms by studying

the linear systems |nHi|, and use this to deduce information about φ0.

First, however, we will reduce the number of cases that we have to study. In order

to do this, we use the theory of 0-, 1- and 2-surfaces developed in Section 3.3. We begin

with a result classifying the configurations of 2-surfaces in X0:

Lemma 3.4.6. All of the 2-surfaces occurring in X0 appear in a single configuration

Σ = {V0, . . . , Vk} where V0 is rational, V1, . . . , Vk are elliptic ruled and Vi meets Vi±1 for

1 ≤ i ≤ k − 1. Furthermore, if Vk+1 /∈ Σ is a surface intersecting Vk along the double

curve Dk+1 = Vk+1 ∩ Vk, then Vk+1 is a 0-surface and (Dk+1|Vk+1
)2 < 0.

Proof. [SB83b, Proposition 2.5] says that any 2-surfaces must occur in a configuration

Σ as above and proves the result about Vk+1. Thus, it only remains to show that there

is only one such configuration.

So suppose X0 = V0 ∪ · · · ∩ Vr and that {V0, . . . , Vk} is a chain of 2-surfaces. If

X0 contains a second distinct chain of 2-surfaces, it must be {Vr, Vr−1, . . . , Vm}, as

the end surface in such a chain must be rational. Then, by [SB83b, Proposition 2.5],

(Dk+1|Vk+1
)2 < 0 and (Dm|Vm−1)2 < 0. But Vk+1, . . . , Vm−1 are elliptic ruled so, by

Lemma 3.3.10 and the triple point formula,

(Dk+1|Vk+1
)2 = −(Dk+2|Vk+1

)2 = (Dk+2|Vk+2
)2 = · · · = −(Dm|Vm−1)2

contradicting (Dm|Vm−1)2 < 0. So there can be only one chain of 2-surfaces, and the

proof is complete.
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Before continuing, it will prove beneficial to introduce a schematic representation

that will be used in the remainder of this section. We can represent the configuration

of surfaces in X0 as a diagram

a0 | a1 | a2 | · · · | ar ,

where ai ∈ {0, 1, 2} represents an ai-surface, and | represents an elliptic double curve.

Then, for instance, Lemma 3.4.6 says that any 2-surfaces in X0 must occur in a config-

uration

2 | 2 | · · · | 2 | 0 | · · · .

With this in place, we prove another result that enables us to classify the 0-surfaces:

Lemma 3.4.7. Any elliptic ruled 0-surface must intersect a 2-surface.

Proof. Let Vi be an elliptic ruled 0-surface and let Hi denote the polarisation divisor

on Hi. Let Di and Di+1 denote the elliptic double curves on Vi. By Lemma 3.3.10,

without loss of generality we may assume that (Di|Vi)2 = e ≥ 0. So, in the notation of

Lemma 3.3.9, in H2(Vi,Z) we have [Di] = s, [Di+1] = s − ef and, by Lemma 3.3.11,

[Hi] = as+ bf for a > 0 and b ≥ 0.

Now consider H2
i = a2e + 2ab. This is strictly positive by Lemma 3.3.2 and, as

(H|X0)2 = 2, must equal 1 or 2.

If H2
i = 1, then necessarily a = 1, b = 0 and e = 1. In this case, (Di+1|Vi)2 = −1

and Hi.Di+1 = 0. Since Di+1 = Vi ∩Vi+1, by the triple point formula, (Di+1|Vi+1)2 = 1.

But then Di+1 is an effective divisor on Vi+1 with strictly positive self-intersection and

Hi.Di+1 = 0 so, by Proposition 3.3.1, Vi+1 is a 2-surface.

If H2
i = 2, one of two cases may occur. Either a = 1, b = 0 and e = 2 or a = 1,

b = 1 and e = 0. In the first case, an argument identical to the one above gives that

Vi must intersect a 2-surface. So we are left with the case a = 1, b = 1 and e = 0.
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In this case, by Lemma 3.3.2, Vi is the only 0-surface. As Hi.Di = Hi.Di+1 = 1, Hi

cannot be numerically trivial on either of the components intersecting Vi, so both of

these components must be 1-surfaces. Therefore, by Lemma 3.4.6, X0 cannot contain

any 2-surfaces, so must have the form

1 | · · · | 1 | 0 | 1 | · · · | 1 ,

where the 0 occurs in the ith place.

Now consider V0. By the argument above, V0 is a rational 1-surface with H2
0 = 0.

Furthermore, repeated application of Lemma 3.3.11, gives that H0.D1 = Hi.Di = 1,

where D1 denotes the unique elliptic double curve on V0. Finally, (V0, D1) is an anti-

canonical pair by Lemma 3.3.6, so KV0 = −D1 and H0.(H0 +KV0) = H2
0 −H0.D1 = −1.

But the genus formula for effective divisors implies that this number must be even. This

is a contradiction, so the second case cannot occur and Vi must intersect a 2-surface.

We are now in a position to begin computing the morphisms φVi and using them to

calculate the image of φ0. The results of Lemma 3.4.6 and Lemma 3.4.7 place strong

restrictions on the possible configurations of 0-, 1- and 2-surfaces in X0. It is easily seen

that the only cases are:

(A) 0 | 1 | 1 | · · · | 1 | 0

(B) 0 | 1 | 1 | · · · | 1 | 0 | 2 | · · · | 2

(C) 0 | 1 | 1 | · · · | 1 | 1

(D) 1 | 1 | · · · | 1 | 0 | 2 | · · · | 2

(E) 0 | 2 | 2 | · · · | 2 | 2

Note that in cases (A) and (B) we allow there to be no 1-surfaces present.

We will consider each of the above cases in turn and apply the results of Section 3.3
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to examine the linear systems |nHi| for n ≥ 0. This will then be used to calculate the

morphism φ0 : X0 → (X0)c.

We begin with case (A). In this case, V0 and Vr are 0-surfaces with H2
0 = H2

r = 1.

We claim that H0.D1 > 0. To see why this is the case, suppose for a contradiction that

H0.D1 ≤ 0. Then, as H0 is nef, H0.D1 = 0. Furthermore, by the Hodge Index Theorem,

(D1|V0)2 < 0 so, by the triple point formula, (D1|V1)2 > 0. But then, by Proposition

3.3.1, V1 would be a 2-surface, which is a contradiction.

Next, by Lemma 3.3.11, we know that Hi is a sum of fibres on each of the 1-surfaces

V1, . . . , Vr−1, so φ0 contracts each of these surfaces onto the double curve D1
∼= Dr.

Thus, we may restrict to the case where there are only the two surfaces V0 and Vr

meeting along an elliptic double curve D.

Given this setup, Friedman shows in the proof of [Fri84, Theorem 5.4] that there

are two distinct possibilities:

(A1) Hi is connected for i = 0, r with pa(H0) = pa(Hr) = 0, H2
0 = H2

r = 1 and

Hi.D = 3.

(A2) Hi is connected for i = 0, r with pa(H0) = pa(Hr) = 1, H2
0 = H2

r = 1 and

Hi.D = 1.

By Lemma 3.3.6, we know that (V0, D) and (Vr, D) are anticanonical pairs. Fur-

thermore, Theorem 3.4.1 shows that the linear systems |H0| and |Hr| do not contain D

in their fixed loci. So we may use Theorem 3.3.5 to examine these linear systems.

Using this the first thing we note is that, by Theorem 3.3.5(4), the graded algebra⊕
n≥0H

0(Vi,OVi(nHi)) is generated in degrees ≤ 3 for i = 0, r. This will enable us to

use Proposition 3.3.7 to calculate the images of φVi . We now proceed with the analysis

of the first two cases:

(3.2.2) Case II.3. Suppose we are in case (A1). If |Hi| has fixed components they must

satisfy case (1.2) of Theorem 3.3.5, as Hi.D > 0. In this case the fixed part |Hi|f of |Hi|
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. . .

D

|Hi|m

−2

C1 −2
C2

−2
Cr−1

Cr −1

Figure 3.3.

has |Hi|f .D = 1 by Lemma 3.3.4, so the mobile part |Hi|m has |Hi|m.D = 2. Hence, the

mobile part contains smooth irreducible members and we have the configuration shown

in Figure 3.3.

Since Hi.Cj = 0 for all fixed components Cj , we contract these to give a linear

system |H ′i| with no fixed components. As H ′i.D = 3, we see that |H ′i| also has no

base points by Theorem 3.3.5(2). Hence, |Hi| may be taken to be base point free, and

contains smooth irreducible members. By Proposition 3.3.7(a), we have the following

dimensions for the cohomology groups:

h0(Vi,OVi(Hi)) = 3

h0(Vi,OVi(2Hi)) = 6

h0(Vi,OVi(3Hi)) = 10

...

Let x, y and z be generating sections of H0(Vi,OVi(Hi)). Since |Hi| is base point

free, the sections x2, y2, z2, xy, xz and yz generate H0(Vi,OVi(2Hi)) and the ten

degree 3 monomials generate H0(Vi,OVi(3Hi)). As noted above, by Theorem 3.3.5(4),

the graded algebra
⊕

n≥0H
0(Vi,OVi(nHi)) is generated in degrees ≤ 3, so there will
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be no new monomials of higher weight. Continuing upwards, we find that there are no

relations in higher degrees either.

Hence, φVi is a morphism φVi : Vi → P2 that takes D to a nonsingular cubic

{f3(xi) = 0} ⊂ P2[x1, x2, x3]. So φ0 is a morphism from X0 to a double cover

of P2 ramified twice over the image of D:

φ0 : X0 −→ {z2 = f2
3 (xi)} ⊂ P(1,1,1,3)[x1, x2, x3, z]

and we are in case (II.3a) of Theorem 3.2.2.

(3.2.2) Case II.4a. Now suppose we are in case (A2). If |Hi| has fixed components,

they must satisfy (1.2) of Theorem 3.3.5. In that case |Hi|m = kC for some irreducible

curve C. Then H2
i = |Hi|2m + 2k − 1 = 1, so we must have k = 1 and |Hi|2m = C2 = 0.

Hence, by the genus formula

2pa(C)− 2 = C2 − C.D

and the fact that |Hi|m.D = Hi.D − 1 = 0, we get that pa(C) = 1, i.e. C is elliptic.

As in case (A1), we contract all fixed components to give a linear system |Hi|

without any. Furthermore, by Theorem 3.3.5(4), the linear system |2Hi| is base point

free. However, Hi.D = 1, so by Theorem 3.3.5(2) the linear system |Hi| must have a

single base point, where Hi meets D. Using Proposition 3.3.7(a), we find that φVi is a

morphism

φVi : Vi −→ {z2 − g(i)
6 (x1, x2, y) = 0} ⊂ P(1,1,2,3)[x1, x2, y, z]

taking D to a curve {l(i)(x1, x2) = 0} ∩ φVi(Vi). Since H2
i > 0, by the Hodge index

theorem any curve E contracted by this morphism must have E2 < 0. By Lemma 3.3.4,

any such E must have E2 = −1 or −2. Contracting such curves produces rational
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double points at worst, so g
(i)
6 (x1, x2, y) = 0 has at worst A-D-E singularities. Note

further that, as the image of D must be nonsingular, g
(i)
6 (0, 0, 1) 6= 0.

To see how these glue to give the image of φ0, write

φV0(V0) = {z2 − g(0)
6 (x1, x2, y) = 0} ⊂ P(1,1,2,3)[x1, x2, y, z],

φVr(Vr) = {z2 − g(r)
6 (x1, x3, y) = 0} ⊂ P(1,1,2,3)[x1, x3, y, z].

Furthermore, after a linear change of coordinates in the xi, we may assume that

φV0(D) = {x2 = 0} ∩ φV0(V0) and φVr(D) = {x3 = 0} ∩ φVr(Vr). So, for i = 0, r,

D = {z2 − g(i)
6 (x1, 0, y) = 0} ⊂ P(1,2,3)[x1, y, z]

and g
(0)
6 (x1, 0, y) = g

(r)
6 (x1, 0, y) (up to multiplication by a constant).

So, using this, write

g
(0)
6 (x1, x2, y) = g

(0)
6 (x1, 0, y) + x2h

(0)
5 (x1, x2, y),

g
(r)
6 (x1, x3, y) = g

(0)
6 (x1, 0, y) + x3h

(r)
5 (x1, x3, y).

Next set

f6(x1, x2, x3, y) = g
(0)
6 (x1, 0, y) + x2h

(0)
5 (x1, x2, y) + x3h

(r)
5 (x1, x3, y).

Then

φV0(V0) = {z2 − f6(x1, x2, x3, y) = x3 = 0} ⊂ P(1,1,1,2,3)[x1, x2, x3, y, z],

φVr(Vr) = {z2 − f6(x1, x2, x3, y) = x2 = 0} ⊂ P(1,1,1,2,3)[x1, x2, x3, y, z],
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so

φ0 : X0 −→ {z2 − f6(x1, x2, x3, y) = x2x3 = 0} ⊂ P(1,1,1,2,3)[x1, x2, x3, y, z].

Finally, note that as g
(i)
6 (0, 0, 1) 6= 0 we must have f6(0, 0, 0, 1) 6= 0, so we are in case

(II.4a) of Theorem 3.2.2.

(3.2.2) Case II.4b. Next we consider case (B). Let V0 and Vk be the 0-surfaces, with

H2
0 = H2

k = 1. In the same way as case (A), we have that H0.D1 > 0 and φ0 contracts

the 1-surfaces V1, . . . , Vk−1 onto the double curve D1
∼= Dk. Furthermore, as H is

numerically trivial on a 2-surface, Vk+1, . . . , Vr are contracted to a point.

Now consider the linear system |Hk| on Vk. As Vk+1 is a 2-surface, Hk.Dk+1 = 0.

By the Hodge index theorem, (Dk+1|Vk)2 ≤ 0 and, by Lemma 3.3.10, (Dk|Vk)2 ≥ 0.

Thus, using the notation of Lemma 3.3.9, in H2(Vk,Z) we may write [Dk] = s and

[Dk+1] = s− (Dk|Vk)2f . Furthermore, by Lemma 3.3.11, [Hk] = as+ bf for a > 0 and

b ≥ 0. Thus, using Hk.Dk+1 = b = 0 and H2
k = 1, we get that [Hk] = s and s2 = 1.

Now, using the structure of the Picard group from Lemma 3.3.9, we have that

Hk ∼ Dk on Vk. Furthermore, by Corollary 3.3.13, we know that the graded algebra⊕
n≥0H

0(Vk,OVk(nHk)) is generated in degrees ≤ 3. Using this and Proposition 3.3.12,

we see that φVk is a morphism

φVk : Vk −→ {z2 − g(k)
6 (x1, x2, y) = 0} ⊂ P(1,1,2,3)[x1, x2, y, z]

taking Dk to a curve {l(k)(x1, x2) = 0}∩φVk(Vk) and contracting Dk+1 to a point. Note

that, as Vk is minimal, by [Har77, Proposition V.2.20], Dk+1 is the only irreducible

curve in Vk with negative self-intersection so, by the Hodge Index Theorem, is the only

irreducible curve C with Hi.C = 0. Thus, Dk+1 is the only curve in Vk contracted

by φVk . As Dk+1 is elliptic with self-intersection (−1), this leads to a simple elliptic
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singularity of type Ẽ8 in φVk(Vk). By Proposition 3.1.8, such a singularity arises from

a consecutive triple point in the branch curve {g(k)
6 (x1, x2, y) = 0} ⊂ P(1, 1, 2).

We next turn our attention to V0. By the same argument as was used to prove case

(A2), we see that φV0 is a morphism

φV0 : V0 −→ {z2 − g(0)
6 (x1, x2, y) = 0} ⊂ P(1,1,2,3)[x1, x2, y, z],

where {g(0)
6 (x1, x2, y) = 0} ⊂ P(1, 1, 2) has at worst A-D-E singularities and D1 is

mapped to a curve {l(0)(x1, x2) = 0} ∩ φV0(V0).

Putting this together in the same way as case (A2), after a linear change of coordi-

nates in the xi we get

φ0 : X0 −→ {z2 − f6(x1, x2, x3, y) = x2x3 = 0} ⊂ P(1,1,1,2,3)[x1, x2, x3, y, z],

where {f6(x1, x2, x3, y) = xj = 0} ⊂ P(1, 1, 1, 2) has a consecutive triple point for

exactly one choice of j ∈ {2, 3} and at worst A-D-E singularities for the other.

Finally, note that as the image of D1 under φV0 must be nonsingular, g
(0)
6 (0, 0, 1) 6= 0.

Thus, f6(0, 0, 0, 1) 6= 0 also, and we are in case (II.4b) of Theorem 3.2.2.

Now assume that we are in case (C). In this case, V0 is a 0-surface with H2
0 = 2.

In the same way as case (A), we have that H0.D1 > 0 and φ0 contracts the 1-surfaces

V1, . . . , Vr−1 onto the double curve D1
∼= Dr. Thus, we may restrict to the case where

we have a 0-surface V0 and a 1-surface Vr meeting along an elliptic double curve D.

Given this setup, Friedman shows in the proof of [Fri84, Theorem 5.4] that there

are two distinct possibilities:

(C1) Hi is connected for i = 0, r with pa(H0) = 1, pa(Hr) = 0, H2
0 = 2, H2

r = 0 and

Hi.D = 2.

(C2) H0 is connected but |Hr| fails to have connected members. In this case pa(H0) = 0,
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H2
0 = 2, H2

r = 0 and Hi.D = 4.

As in case (A), we may use Theorem 3.3.5 to examine these linear systems. The first

thing we note is that, by Theorem 3.3.5(4), the graded algebra
⊕

n≥0H
0(Vi,OVi(nHi))

is generated in degrees ≤3 for i = 0, r. This will enable us to use Proposition 3.3.7 to

calculate the images of φVi . We now proceed with the analysis of the individual cases:

(3.2.2) Case II.1a. First assume we that are in case (C1). In the same way as case

(A1) we may arrange that |H0| has no fixed components, and Theorem 3.3.5(2) implies

that it is base point free. Then Theorem 3.3.5(1.2) implies that |H0| contains irreducible

members so, using Proposition 3.3.7(a), we find that φV0 is a morphism

φV0 : V0 −→ {z2 − f4(xi) = 0} ⊂ P(1,1,1,2)[x1, x2, x3, z]

where f4(xi) = 0 has at worst A-D-E singularities and D is mapped to a nonsingular

curve {l(xi) = 0}∩φV0(V0) (which is a double cover of the rational curve {l(xi) = z = 0}

ramified over four points).

Now we look at Vr. By Theorem 3.3.5(3.1), |Hr| has no base locus and so φVr is a

morphism φVr : Vr → P1 exhibiting Vr as a ruled surface. The restriction of φVr to D

exhibits D as a double cover of P1 ramified over four points.

Let ψ denote the morphism

ψ : {z2 − f4(xi) = 0} −→ {w2 − l2(xi)f4(xi) = 0} ⊂ P(1,1,1,3)[x1, x2, x3, w]

(x1 : x2 : x3 : z) 7−→ (x1 : x2 : x3 : l(xi)z)

Then ψ is an isomorphism outside of D, and D is mapped 2 :1 onto the rational curve

{l(xi) = w = 0}. So ψ realises the contraction of Vr as restricted to V0, and hence

ψ ◦ φV0(V0) = φ0(V0). Therefore we are in case (II.1a) of Theorem 3.2.2.

(3.2.2) Case II.2. Next assume we are in case (C2). In the same way as before we
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may arrange that |H0| has no fixed components, and Theorem 3.3.5 implies that it is

base point free and has irreducible members. Then, using Proposition 3.3.7(a), we find

that φV0 is a morphism

φV0 : V0 −→ {z2 − f2(xi) = 0} ⊂ P3[x1, x2, x3, z]

where f2(xi) = 0 has at worst A-D-E singularities and D is mapped to a nonsingular

curve {q(xi) = 0}∩φV0(V0) (which is a double cover of the rational curve {q(xi) = z = 0}

ramified over four points).

Turning our attention to Vr, in the proof of [Fri84, Theorem 5.4] Friedman shows

that Vr is a ruled surface with Hr = 2F , for F a fibre of the ruling. Since F is irreducible,

we may use Proposition 3.3.7(a) to show that φVr is a contraction

φVr : Vr −→ Q := {q(xi) = 0} ⊂ P2[xi]

with q a nonsingular quadric. The restriction of φVr to D exhibits D as a double cover

of Q ramified over four points.

Now, as before, we let ψ denote the morphism

ψ : {z2 − f2(xi) = 0} −→ {w2 − q2(xi)f2(xi) = 0} ⊂ P(1,1,1,3)[x1, x2, x3, w]

(x1 : x2 : x3 : z) 7−→ (x1 : x2 : x3 : q(xi)z)

Then ψ is an isomorphism outside of D, and D is mapped 2 :1 onto the rational curve

{q(xi) = w = 0}. So ψ realises the contraction of Vr as restricted to V0, and hence

ψ ◦ φV0(V0) = φ0(V0). Therefore we are in case (II.2) of Theorem 3.2.2.

(3.2.2) Case II.1b. Now assume that we are in case (D). Let V0, . . . , Vk−1 be the

1-surfaces, Vk be the 0-surface and Vk+1, . . . , Vr be the 2-surfaces. In the same way as

before, Hk.Dk > 0 and φ0 contracts the 1-surfaces onto the double curve D1
∼= Dk.
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Moreover, as H is numerically trivial on a 2-surface, Vk+1, . . . , Vr are contracted to a

point.

The same argument as was used in case (B) shows that Hk.Dk+1 = 0, (Dk+1|Vk)2 ≤ 0

and (Dk|Vk)2 ≥ 0. So, in the notation of Lemma 3.3.9, in H2(Vk,Z) we can write

[Dk] = s, [Dk+1] = s− (Dk|Vk)2f and [Hk] = as+ bf for some a > 0 and b ≥ 0. Then,

using Hk.Dk+1 = b = 0 and H2
k = 2, we get that [Hk] = s and s2 = 2.

Now, using the structure of the Picard group from Lemma 3.3.9, we have that

Hk ∼ Dk on Vk. Furthermore, by Corollary 3.3.13, we know that the graded algebra⊕
n≥0H

0(Vk,OVk(nHk)) is generated in degrees ≤ 3. Using this and Proposition 3.3.12,

we see that φVk is a morphism

φVk : Vk −→ {z2 − f4(xi) = 0} ⊂ P(1,1,1,2)[x1, x2, x3, z]

mapping Dk to a nonsingular curve {l(xi) = 0} ∩ φV0(V0) (which is a double cover of

the rational curve {l(xi) = z = 0} ramified over four points) and contracting Dk+1 to a

point. In the same way as case (B), Dk+1 is the only curve contracted by φVk . As Dk+1

is elliptic with self-intersection (−2), this leads to a simple elliptic singularity of type

Ẽ7 in φVk(Vk). By Proposition 3.1.8, such a singularity arises from a quadruple point

in the branch curve {f4(xi) = 0} ⊂ P2.

Now we turn our attention to V0. As in case (C1), φV0 is a morphism φV0 : V0 → P1

exhibiting V0 as a ruled surface. The restriction of φV0 to D1 exhibits D1 as a double

cover of P1 ramified over four points.

Let ψ denote the morphism

ψ : {z2 − f4(xi) = 0} −→ {w2 − l2(xi)f4(xi) = 0} ⊂ P(1,1,1,3)[x1, x2, x3, w]

(x1 : x2 : x3 : z) 7−→ (x1 : x2 : x3 : l(xi)z)

Then ψ is an isomorphism outside of Dk, and Dk is mapped 2:1 onto the rational curve
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{l(xi) = w = 0}. So ψ realises the contraction of V0 as restricted to Vk, and hence

ψ ◦ φVk(Vk) = φ0(Vk). Therefore we are in case (II.1b) of Theorem 3.2.2.

Finally, we consider case (E). In this case, V0 is a 0-surface with H2
0 = 2 and

V1, . . . , Vr are 2-surfaces. As H is numerically trivial on V1, . . . , Vr, these surfaces are

contracted to a point by φ0, so we need only consider the restriction of φ0 to V0.

So consider V0. Note that, by Lemma 3.3.6, (V0, D1) is an anticanonical pair and, by

Theorem 3.4.1, D1 is not fixed in the linear system |H0|. So we may use Theorem 3.3.5

to examine these linear systems. We first note that Theorem 3.3.5(4) implies that the

graded algebra
⊕

n≥0H
0(V0,OV0(nH0)) is generated in degrees ≤ 3. This will enable

us to use Proposition 3.3.7 to calculate the image of φV0 .

We now proceed with the analysis of the linear system |H0|. There are 2 cases to

consider:

(E1) |H0| has no fixed components.

(E2) |H0| has fixed components.

(3.2.2) Case II.0h. We first consider case (E1), where |H0| has no fixed components.

Then, by Theorem 3.3.5(2), |H0| has no base points either. So, by Bertini’s Theorem,

|H0| contains irreducible members. Let C ∈ |H0| be one such. Then C is nef, C2 = 2

and C ∩D1 = ∅, so we may apply Proposition 3.3.7(b) to see that φV0 is a morphism

φV0 : V0 −→ {z2 − f6(xi) = 0} ⊂ P(1,1,1,3)[x1, x2, x3, z].

This morphism contracts exactly those irreducible curves E in V0 satisfying H0.E = 0.

By the Hodge Index Theorem, such curves must have E2 < 0. So, by Lemma 3.3.4, if

E 6= D1 is contracted then E is rational with E2 = −1 or −2. So φV0 contracts D1 and

a collection of (−1)- and (−2)-curves. This gives rise to an elliptic singularity, possibly

along with some rational double points.
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It just remains to classify the elliptic singularity arising in φV0(V0). Suppose that

Z = D1 +
∑k

i=1Ei is a maximal connected configuration of 0-curves in V0 (recall that

a 0-curve is an irreducible curve C with Hi.C = 0). By the argument above, Ei is a

(−1)- or (−2)-curve for 1 ≤ i ≤ k. As Z is connected, at least one of the Ei satisfies

Ei.D0 = 1, so has E2
i = −1 by Lemma 3.3.4. Thus, we can contract this Ei without

affecting the nonsingularity of V0. Furthermore, Z remains connected after performing

this procedure, so we may iterate it to obtain V0 nonsingular with Z = D1. Given

this situation, by Definition 3.1.7, D1 contracts to give a simple elliptic singularity in

φV0(V0). We will find the type of this singularity by calculating the self-intersection

(D1|V0)2 (which is strictly negative by the Hodge Index Theorem).

Note that dim |H0| = 2, so |H0| contains enough divisors to sweep out V0. Therefore,

there must exist an element of the form (D1 +E) ∈ |H0| for some effective E. We claim

that E is nef. To see this, let C be an irreducible curve in V0. Then E.C = H0.C−D1.C.

For a contradiction, we suppose that this is strictly negative for some C. Then, since

E is effective, we must have C2 < 0.

Note that since E.D1 = −(D1|V0)2 > 0, we may assume C 6= D1. Furthermore, if

C.D1 = 0, then E.C = H0.C ≥ 0 as H0 is nef. So C.D1 > 0. Therefore, by Lemma

3.3.4, C2 = −1 and C.D1 = 1. But then in order for C.E < 0 to hold, we must have

H0.C = 0. So C is a (−1)-curve with C.D1 = 1 and H0.C = 0, which cannot exist as

all such curves were contracted above.

Hence E is nef with

E2 = H2
0 − 2H0.D1 + (D1|V0)2 = 2 + (D1|V0)2 ≥ 0.

So −2 ≤ (D1|V0)2 < 0, and φV0(V0) contains a simple elliptic singularity of type Ẽ7 or

Ẽ8. By Proposition 3.1.8, such singularities arise respectively from quadruple points or

consecutive triple points in the branch curve {f6(xi) = 0} ⊂ P2. Therefore we are in
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case (II.0h) of Theorem 3.2.2.

(3.2.2) Case II.0u. Finally, we consider case (E2), where |H0| has a fixed component.

By Theorem 3.3.5(1.1), the fixed part |H0|f = C is a smooth rational (−2)-curve and

the mobile part |H0|m = 2E for some smooth elliptic E with E2 = E.D1 = 0 and

C.E = 1.

Let C and E be as above. Then since C is a rational (−2)-curve, Lemma 3.3.4

implies that C.D1 = 0 and so, as C is irreducible, C ∩ D1 = ∅. Furthermore, E is

an irreducible elliptic curve with E 6= D1 and E.D1 = 0, so E ∩ D1 = ∅ also. So the

divisor (C + 2E) ∼ H0 satisfies the conditions of Lemma 3.3.7(b) and we may apply

this Lemma to see that

h0(V0,OV0(nH0)) = n2 + 2.

To find the map φV0 we note that |H0| has a fixed component, but Theorem 3.3.5(4)

shows that |nH0| has no fixed components or base locus for n ≥ 2. So there must be a

quadric relation in H0(V0,OV0(2H0)), and φV0 defines a morphism

φV0 : V0 −→ {z2 − f6(xi, y) = f2(xi) = 0} ⊂ P(1,1,1,2,3)[x1, x2, x3, y, z].

This morphism contracts exactly those curves Z in V0 with H0.Z = 0. The (−2)-

curve C is contracted to the point (0 : 0 : 0 : 1 : z) lying over the vertex of the cone

{f2(xi) = 0} ⊂ P(1, 1, 1, 2), and D1 is contracted to a simple elliptic singularity. By a

similar calculation to the one performed in case (E1), we find that the resulting surface

has a simple elliptic singularity of type Ẽ7 or Ẽ8, along with some rational double

points. By Proposition 3.1.8, these singularities arise from either a quadruple point or

a consecutive triple point, possibly along with some A-D-E singularities, in the branch

curve {f6(xi, y) = f2(xi) = 0} ⊂ P(1, 1, 1, 2). Finally, note that since the elliptic curve

E is nonsingular, this branch curve cannot pass through the vertex (0 : 0 : 0 : 1) of the

cone. Therefore we are in case (II.0u) of Theorem 3.2.2.
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This completes the analysis of the Type II fibres.

3.5 Type III Fibres

It remains to classify the Type III fibres. We would like to use similar techniques to

those we used in the Type II case to study (X,L). In order to do this, we would like to

prove a Type III analogue of Theorem 3.4.1.

As before, we begin by setting up some notation. Let π : X → ∆ be a degeneration

of K3 surfaces with X0 = π−1(0) a fibre of Type III. Write X0 = V0∪· · ·∪Vr for rational

surfaces Vi. Note that we assume here that the surfaces Vi have been normalised. Let

Dij denote the rational double curve Vi ∩ Vj and let Di =
⋃
j Dij denote the double

locus on Vi. Recall that a double curve Dij is called a (∗)-curve if it is nonsingular and

has self-intersection (−1) on both components in which it lies. As usual, L denotes a

line bundle that induces a polarisation of degree two on a general fibre and H denotes

an effective, nef and π-flat divisor in the linear system defined by L.

Remark 3.5.1. Before we embark on the results of this section, we make a remark on

non-normal components. Suppose that V i is a non-normal component in the Type III

fibre X0. Let ν : Vi → V i denote the normalisation. Then the non-normal locus in V i

is a smooth rational curve Dii. The preimage Dii := ν−1(Dii) consists of two disjoint

rational curves in Vi. As these curves will often be considered alongside double curves

that lie in two different components, we will frequently abuse notation and refer to them

as Dij |Vi and Dij |Vj , where it is understood that if i and j are equal these refer to the

disjoint curves in the normalisation. Finally, when we refer to the restriction of a line

bundle or divisor to a component Vi, we understand this to mean the pull-back of that

restriction under the normalisation map ν.

We begin with the analogue of Theorem 3.4.1 alluded to above:
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Theorem 3.5.2. Let π : X → ∆ be a Type III degeneration of K3 surfaces over ∆

and let H be an effective, nef and π-flat divisor on X that induces a polarisation of

degree two on the generic fibre. Let Hi be the effective (or zero) divisor on Vi defined

by intersecting with H. If a component Dij of the double locus Di is a fixed component

of |Hi|, then Dij is a (∗)-curve with Hi.Dij = 0.

Proof. Suppose that the double curve Dij = Vi ∩ Vj is fixed in the linear system |Hi|.

Applying Proposition 3.4.5 with L equal to the restriction of OX(H) to X0, and noting

that this restriction defines the complete linear system |Hi| on each component Vi of

X0 by Lemma 3.2.5, we get that Hi.Dij = 0, proving half of the theorem.

Next, using Lemma 3.4.3 we see that Dij must also be fixed in |Hj | (or, if i = j, we

note that both components of Dii must be fixed in |Hi|). This places a strong restriction

on Dij : by Lemma 3.4.4 it must have negative self-intersection in both Vi and Vj (or

non-positive if Dij is nodal). In this setting, the triple point formula gives

(Dij |Vi)2 + (Dij |Vj )2 = −Tijk =


0 if Dij is a nodal curve on Vi or Vj

−2 otherwise

If Dij is nonsingular, this implies that it must be a (∗)-curve, as required. So it only

remains to show that Dij cannot be a rational nodal curve.

So suppose for a contradiction that Dij |Vi is a rational nodal curve that is fixed

in |Hi|. Then Vi cannot be a 2-surface, as Hi is numerically trivial on such surfaces.

Moreover Vi cannot be a 1-surface, as Dij is a 0-curve and by Proposition 3.3.1 the

0-curves on a 1-surface form a ruling, so we would have Dij |Vi ∼= P1. This contradicts

our assumption that Dij |Vi is nodal. So Vi must be a 0-surface.

In order to reach a contradiction we will show that any 0-surface that satisfies

Hi.Dij = 0 for all of its double curves Dij can border only 2-surfaces. Then, noting

that Dij is the only double curve in Vi, we must have that Vj is a 2-surface. But then,
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as Hj is numerically trivial, Dij cannot be fixed in |Hj |. This contradicts Lemma 3.4.3.

Thus, it only remains to prove:

Lemma 3.5.3. With assumptions as in Theorem 3.5.2, suppose in addition that Vi is

a 0-surface in X0. Then if Hi.Dij = 0 for all double curves Dij in Vi,

(a) Vi is the only 0-surface, and

(b) all of the other components of X0 are 2-surfaces.

Proof. We begin with (a). Note that, H2
i > 0 by Lemma 3.3.2, so H2

i must equal 1 or

2. Then, by the Riemann-Roch Theorem,

(
H2
i +

∑
j

Hi.Dij

)
∈ 2Z.

If H2
i = 1 then Hi.Dij > 0 for some j, as Hi is nef, and we are done. So we may assume

H2
i = 2. By Lemma 3.3.2 again, Vi can be the only 0-surface in X0.

Now consider (b). We want to show that X0 cannot contain any 1-surfaces. Suppose

that this is not the case, so that there exists a 1-surface Vj1 in X0. By Proposition 3.3.1

we see that Vj1 is ruled by the pencil of 0-curves on it. Let Fj1 be an irreducible curve

in this pencil that is not a component of the double curve Dj1 . Then, by Lemma 3.3.4,

Fj1 .Dj1 = 2. As Dj1 is effective, this implies that Dj1 contains either two sections or

one bisection of the ruling for Vj1 . Let Dj1j2 = Vj1∩Vj2 be one such section or bisection.

Now consider the divisor Hj1 on Vj1 defined by intersecting with H. By Lemma

3.3.2 we have H2
j1

= 0 so, as Hj1 is effective and nef, Hj1 must be a sum of 0-curves.

Thus Hj1 is a sum of fibres of the ruling for Vj1 and Hj1 .Dj1j2 > 0 as Dj1j2 is a section

or bisection of this ruling.

Next consider the component Vj2 . As Hj2 .Dj1j2 = Hj1 .Dj1j2 > 0, this component

cannot be a 2-surface. Moreover it cannot be a 0-surface, as by assumption Vi is the

only 0-surface and Hi.Dik = 0 for all k. Therefore, Vj2 must be another 1-surface.

124



3.5. Type III Fibres

Repeating the argument above, we see that Hj2 must be a sum of fibres of a ruling

for Vj2 and Dj1j2 must be a section or bisection of that ruling. Furthermore, if Dj1j2 is

a section then there is another double curve Dj2j3 on Vj2 that is a section of the same

ruling, so we may repeat the process to find a 1-surface Vj3 meeting Vj2 along Dj2j3 . If

Dj1j2 is a bisection then no other double curves on Vj2 are sections or bisections of the

ruling, so the process terminates.

Repeating this argument as many times as possible and relabeling components if

necessary, we obtain either:

• a cycle Vj1 , . . . , Vjn of 1-surfaces meeting along sections of a given ruling for each;

or

• a chain Vj1 , . . . , Vjn of 1-surfaces such that Djkjk+1
= Vjk ∩ Vjk+1

is a section of a

given ruling on Vjk for k ∈ {2, . . . , n − 1} and a bisection of a given ruling on V1

and Vn.

Moreover Hjk .Fjk = 0 for any fibre Fjk of the given ruling on Vjk and any k ∈ {1, . . . , n}.

However, such configurations of 1-surfaces are excluded by [SB83b, Lemma 2.2]. This

is a contradiction, so X0 cannot contain any 1-surfaces.

This completes the proof of Theorem 3.5.2.

So let H be defined as before. By Lemma 3.2.5 the restriction of the morphism

φ : X → Xc to X0 agrees with the morphism φ0 : X0 → (X0)c. To prove the Type III

case of Theorem 3.2.2, all that remains is to calculate the image of φ : X0 → (X0)c.

As in Theorem 3.5.2, let Hi denote the intersection of H with Vi. Note that Hi is

effective and nef. The morphism

φVi : Vi −→ Proj
⊕
n≥0

H0(Vi,OVi(nHi))
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defined by the linear systems |nHi| for n ≥ 0 agrees with the map defined by the

restriction of φ0 to Vi. We can gather information about these maps by studying the

linear systems |nHi|, and use this to deduce information about φ0.

The purpose of Theorem 3.5.2 then becomes clear. It means that φ0 contracts any

double curves Dij that are fixed in |Hi| for some i, j. Furthermore, as these Dij are

(∗)-curves, this contraction does not affect the nonsingularity of Vi or Vj (although the

total space X may become singular). This allows us to get rid of such fixed double

curves, so that we can use Theorem 3.3.5 to study the components of X0.

Following a similar method to the Type II case, we now wish to show that the 1-

and 2-surfaces in X0 are contracted by φ0. This will allow us to restrict to the case

where we have (at most) two components meeting along a union of rational curves. We

have:

Lemma 3.5.4. If Vi is a 1-surface (resp. 2-surface), then Vi is contracted to a curve

(resp. point) by φVi.

Proof. First note that, by the argument above, we may assume that no double curve in

Vi is fixed in |Hi|. Furthermore, as Vi is not a 0-surface, by Lemma 3.3.2 we know that

H2
i = 0.

Thus, if Vi is a 1-surface, we may apply Theorem 3.3.5 to see that Hi ∼ kC for some

k > 0 and C irreducible with C2 = 0. Furthermore, as C is a 0-curve, by Proposition

3.3.1 we know that C is a fibre of a ruling for Vi. So Hi is a sum of fibres in Vi and φVi

contracts Vi to a section of the ruling.

Finally, if Vi is a 2-surface, then Hi is numerically trivial. So Hi.E = 0 for any

effective divisor E on Vi, and φVi contracts Vi to a point.

In order to deal with the other components we note first that if Vi is a 0-surface,

Lemma 3.3.2 shows that it must have H2
i > 0. So there can exist at most 2 such

components. Furthermore, by Theorem 3.3.5(4), on a 0-surface the graded algebra
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⊕
n≥0H

0(Vi,OVi(nHi)) is generated in degrees ≤ 3. This will prove very useful for

calculating the maps φVi .

With this in place, we can proceed with the classification. There are two cases to

consider; the case where there are two components with H2
i > 0 (in which case H2

i = 1

on each) and the case where there is exactly one component with H2
i > 0 (in which case

H2
i = 2).

So assume that there are two components in X0 with H2
i = 1. Without loss of

generality, we may renumber the components so that these are V0 and V1. By Lemma

3.5.4, φ0 contracts all components except V0 and V1, leaving V0 and V1 meeting along a

union of rational curves.

By the genus formula

2pa(Hi) = 3−Hi.Di.

Since H2
i > 0, the linear system |Hi| contains connected members and pa(Hi) ≥ 0. So

Hi.Di is equal to 1 or 3. This gives 3 separate cases:

(3.2.2) Case III.3. First consider the case where H0.D0 = H1.D1 = 3. By an

analogous argument to that used to prove case (II.3) of Theorem 3.2.2, we see that φ0

is a morphism from X0 to a double cover of P2 ramified over a singular cubic:

φ0 : X0 −→ {z2 = f2
3 (xi)} ⊂ P(1,1,1,3)[x1, x2, x3, z]

where f3(xi) = 0 has nodal singularities.

This proves the statement of case (III.3) in Theorem 3.2.2. Note however that

there are 3 distinct subcases, distinguished by whether Hi intersects one, two or three

rational components of Di. These are best explained by Figure 3.4, which shows the

locus {f3(xi) = 0} ⊂ P2 over which the double cover φ0(X0) of P2 is ramified with index

two. This locus is also isomorphic to the image of φ0(D0) under the projection defining

the double cover.
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(i) (ii) (iii)

Figure 3.4.

In Figure 3.4(i) Hi meets exactly one component of Di, so all other components are

contracted by φ0 and f3(xi) = 0 is a nodal cubic. Figure 3.4(ii) corresponds to when

Hi meets exactly two components of Di, here f3(xi) = 0 is the union of a line and a

quadric. Finally, in Figure 3.4(iii) Hi meets three components of Di and f3(xi) = 0 is

a union of three lines.

(3.2.2) Case III.4a. Next, consider the case where H0.D0 = H1.D1 = 1. Again, by

an analogous argument to that used to prove case (II.4a) of Theorem 3.2.2 we see that

φVi defines a morphism

φVi : Vi −→ {z2 − g(i)
6 (x1, x2, y) = 0} ⊂ P(1,1,2,3)[x1, x2, y, z]

where g
(i)
6 (x1, x2, y) = 0 has at worst A-D-E singularities. Di is mapped to a curve

{l(i)(x1, x2) = 0} ∩ φVi(Vi) that meets g
(i)
6 (x1, x2, y) = 0 at two distinct points, one of

which has multiplicity two. Furthermore, by Theorem 3.3.5, the general member of the

linear system |Hi| is nonsingular, so the point (0 : 0 : 1) cannot lie in the branch curve

{g(i)
6 (x1, x2, y) = l(i)(x1, x2) = 0}.

After a linear change of co-ordinates in the xi, we see that φ0 is a morphism from

X0 to a double cover of this image ramified twice over the image of Di

φ0 : X0 −→ {z2 − f6(x1, x2, x3, y) = x2x3 = 0} ⊂ P(1,1,1,2,3)[x1, x2, x3, y, z].
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Furthermore, as g
(i)
6 (0, 0, 1) 6= 0, we have f6(0, 0, 0, 1) 6= 0, and we are in case (III.4a) of

Theorem 3.2.2.

(3.2.2) Case III.4b. Lastly, we consider the case where H0.D0 = 3 and H1.D1 = 1.

Note that this can only occur if H0 intersects three components of D0 and V0 intersects

itself along two of these components.

By the arguments above, φV0 defines a morphism φV0 : V0 → P2, taking D0 to a

union of three lines. Furthermore, φV1 defines a morphism

φV1 : V1 −→ {z2 − g6(x1, x2, y) = 0} ⊂ P(1,1,2,3)[x1, x2, y, z]

where g6(x1, x2, y) = 0 has at worst A-D-E singularities and g6(0, 0, 1) 6= 0. After a

linear change in coordinates in the xi, we may assume that D1 is mapped to a curve

{x2 = 0} ∩ φV1(V1) that meets g6(x1, x2, y) = 0 at two distinct points, one of which has

multiplicity two.

Next, note that the restriction of φ0 to V0 is the composition of the map φV0 above

with the morphism ψ identifying two of the components of φV0(D0) and taking the third

to the curve

{z2 − g6(x1, 0, y) = 0} ⊂ P(1,2,3)[x1, y, z].

By the description of g6 above, after a quadratic change of coordinates in y we may

factorise g6(x1, 0, y) as

g6(x1, 0, y) = y2(y − a2x2
1),

with a ∈ C − {0} (note that this change of coordinates in y is not strictly required in

order to prove Theorem 3.2.2; we do it solely to make the calculations below easier to

follow). Then if we assume, without loss of generality, that φV0(D0) is the union of the

three hyperplane sections {xi = 0} ⊂ P2, the morphism ψ maps P2 to the cone over the
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curve

{z2 − y2(y − a2x2
1) = 0} ⊂ P(1,2,3)[x1, y, z].

Explicitly, the morphism ψ is given by

ψ : P2[x1, x2, x3] −→ {z2 − y2(y − a2x2
1) = 0} ⊂ P(1,1,2,3)[x1, x3, y, z]

(x1 : x2 : x3) 7−→
(
x1 − x2

2a
: x3 : x1x2 : x1x2(x1 + x2)

)
.

Note that ψ is an isomorphism outside of {x1 = 0} and {x2 = 0}, which are identified.

Moreover, it takes {x3 = 0} to the curve

{z2 − y2(y − a2x2
1) = 0} ⊂ P(1,2,3)[x1, y, z],

as required.

Finally, the argument from case (II.4a) shows that we may find f6(x1, x2, x3, y) such

that

f6(x1, x2, 0, y) = g6(x1, x2, y)

f6(x1, 0, x3, y) = y2(y − a2x2
1).

Thus, φ0 is a morphism

φ0 : X0 −→ {z2 − f6(x1, x2, x3, y) = x2x3 = 0} ⊂ P(1,1,1,2,3)[x1, x2, x3, y, z].

Furthermore, as g6(0, 0, 1) 6= 0, we have f6(0, 0, 0, 1) 6= 0, and we are in case (III.4b) of

Theorem 3.2.2.

Our next task is to study the case where there is exactly one component with H2
i > 0.

Without loss of generality, we may renumber this component V0. Necessarily H2
0 = 2.
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By Lemma 3.5.4, we may contract all components except V0. By the genus formula

2pa(H0) = 4−H0.D0

where D0 is the double curve on V0. This gives that H0.D0 = 0, 2 or 4. We start with

the cases where H0.D0 > 0, as the case where H0.D0 = 0 will require some extra work.

(3.2.2) Case III.1. Consider first the case where H0.D0 = 2. By an analogous

argument to that used to prove case (II.1a) of Theorem 3.2.2, we see that φV0 is a

morphism

φV0 : V0 −→ {z2 − f4(xi) = 0} ⊂ P(1,1,1,2)[x1, x2, x3, z]

where f4(xi) = 0 has at worst A-D-E singularities. D0 maps to {l(xi) = 0} ∩ φV0(V0),

where l(xi) = 0 meets f4(xi) = 0 in two or three points, with multiplicities ≤ 2. The

image of D0 under this map is a double cover of the nonsingular curve {l(xi) = z = 0},

ramified four times over these two or three points. As before, the contraction of the

other components of X0 maps the image of D0 2 : 1 onto this curve. This proves case

(III.1) of Theorem 3.2.2.

As before there are two subcases, distinguished by whether H0 intersects one or

two rational components of D0. Suppose first that H0 intersects exactly one rational

component of D0. Then φV0 contracts all but this component, so maps D0 to a nodal

cubic. This must be a double cover of l(xi) = 0 ramified four times over three points

(the only node occurs over the point with ramification index two). So φV0(D0) meets

f4(xi) = 0 in three points, with multiplicities 1, 1 and 2. Then φ0(X0) is a double

cover of P2 ramified over the configuration shown in Figure 3.5(i), where the index of

ramification is one along the thinner curve and two along the thicker one.

Now suppose that H0 intersects two rational components of D0. Then φV0 maps D0

to a pair of rational curves meeting in two nodes. This must occur as a double cover
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l(xi) = 0

f4(xi) = 0

(i)

l(xi) = 0

f4(xi) = 0

(ii)

Figure 3.5.

of l(xi) = 0 ramified four times over two points, with each point having ramification

index two. Hence φV0(D0) meets f4(xi) = 0 in two points, each having multiplicity two.

φ0(X0) is a double cover of P2 ramified over the configuration shown in Figure 3.5(ii)

where, as above, the index of ramification is one along the thinner curve and two along

the thicker one.

(3.2.2) Case III.2. Next consider the case where H0.D0 = 4. Again, by an analogous

argument to that used to prove case (II.2) of Theorem 3.2.2, we see that φV0 is a

morphism:

φV0 : V0 −→ {z2 − f2(xi) = 0} ⊂ P3[x1, x2, x3, z]

where f2(xi) = 0 has at worst A-D-E singularities. D0 maps to {q(xi) = 0} ∩ φV0(V0),

where q(xi) = 0 meets f2(xi) in two, three or four points, with multiplicities ≤ 2. The

image of D0 under φV0 is a double cover of the rational curve {q(xi) = z = 0} (that

may have nodal singularities) ramified four times over these points. As before, the

contraction of the other components of X0 maps the image of D0 2 : 1 onto this curve.

This proves case (III.2) of Theorem 3.2.2.

Once again there are five subcases, distinguished by the number of components of
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(v)(iv)

(i) (ii) (iii)

Figure 3.6.

D0 that H0 intersects. These cases are illustrated by Figure 3.6. In each case the thin

circle represents the locus f2(xi) = 0 and the thick lines represent the locus q(xi) = 0.

As before, φ0(X0) is a double cover of P2 ramified over such a configuration, with

ramification index two along the thick lines and one along the thin ones. The image of

D0 under φV0 is a double cover of the thick locus, ramified over its intersections with

the circle. We will briefly analyse each case.

In Figure 3.6(i) H0 intersects exactly one component of D0, all other components

are contracted. φV0 maps D0 to a double cover of a quadric curve ramified over three

points, one of them doubly. This image is a nodal cubic, with node at the point where

the thick locus lies tangent to the circle.

In Figure 3.6(ii) H0 intersects two components of D0 and φV0 maps D0 to a double

cover of a nonsingular quadric ramified doubly at each of two points. In both this case

and the next the image of D0 is a pair of quadrics meeting at two points.

In Figure 3.6(iii) H0 also intersects two components of D0. In this case φV0 maps D0

to a double cover of a pair of lines ramified over four points, two on each line. Note that

this is the only subcase of (III.2) that has four distinct points of intersection between

{q(xi) = 0} and {f2(xi) = 0}, and that in this case q has a nodal singularity.
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In Figure 3.6(iv) H0 intersects three components of D0. The image of D0 under φV0

is a double cover of a pair of lines ramified over three points, with two single ramification

points on one line and a double one on the other. This image is a pair of lines (split

from the line with the double ramification point) and a quadric (a double cover of a line

ramified at two points), arranged to form a triangle.

Finally, in Figure 3.6(v) H0 intersects four components of D0. The image of D0

under φV0 is a double cover of a pair of lines ramified doubly at two points, one on each

line. Each of these lines thus splits into a pair of lines, making the image of D0 into a

configuration of four lines arranged to form a quadrilateral.

(3.2.2) Cases III.0h and III.0u. Finally, consider the case where H0.D0 = 0. Since

H0 is nef and D0 =
∑

iD0i is effective, H0.D0i = 0 for all i. So D0 is contracted by

φV0 . Furthermore, Lemma 3.5.3 and [SB83b, Proposition 2.5] show that all of the other

components of X0 are 2-surfaces, so are contracted to a point along with D0. Given

this, in a manner analogous to case (II.0) we split into two subcases depending upon

whether |H0| has fixed components or not.

In the case where |H0| has no fixed components, an argument similar to that used

to prove case (II.0h) of Theorem 3.2.2 shows that φV0 is a morphism

φV0 : V0 −→ {z2 − f6(xi) = 0} ⊂ P(1,1,1,3)[x1, x2, x3, z]

that contracts D0 and a collection of (−1)- and (−2)-curves. This gives rise to some

rational double points and a cusp singularity in the image surface.

In the case where |H0| has fixed components, an argument similar to that used to

prove case (II.0u) of Theorem 3.2.2 shows that φV0 is a morphism

φV0 : V0 −→ {z2 − f6(xi, y) = f2(xi) = 0} ⊂ P(1,1,1,2,3)[x1, x2, x3, y, z],

134



3.5. Type III Fibres

where f6(0, 0, 0, 1) 6= 0 and φV0 contracts D0 to a cusp singularity and a collection of

(−1)- and (−2)-curves to rational double points.

All that remains is to classify the cusp singularities occurring in the image of φ0.

By Proposition 3.1.9, in order to do this we just need to find the self-intersections of

the components D0i of the double curve D0.

As in case (II.0h) of Theorem 3.2.2 we may contract any 0-curves that meet D0

but are not contained in D0, without affecting the nonsingularity of V0 or the type of

singularity obtained.

Furthermore, we now show that for all i we may assume

(D0i|V0)2 ≤


−1 if D0i|V0 is nodal

−2 otherwise.

By the Hodge Index Theorem, we know that (D0i|V0)2 < 0. If D0i|V0 is nodal then we

are done. So assume that D0i|Vi is smooth and rational. Then if (D0i|V0)2 = −1 for some

i, it must be a (−1)-curve. But then, as H0.D0i = 0, we may contract this (−1)-curve

without affecting the nonsingularity of V0 or the type of singularity obtained. Iterating

this procedure, we may assume either that D0i|V0 is nodal or (D0i|V0)2 ≤ −2 for all i.

Next we prove a lemma:

Lemma 3.5.5. In the setting described above, there exists an element of |H0| of the

form E +D0, where E is effective and nef on V0.

Proof. Note first that dim |H0| = 2, so |H0| contains enough divisors to sweep out V0.

Choose some irreducible component D0i of D0. As H0.D0i = 0, there exists a connected

element of |H0| of the form D0i + E, for E effective or trivial. By the Hodge index

theorem (D0i|V0)2 < 0, so E.D0i > 0. Let D0j be another component of D0 with
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D0j .D0i = 1. Then

0 = H0.D0j = (D0i + E).D0j = 1 + E.D0j .

So E.D0j < 0 and, as E is effective, D0j must be a component of E. Noting that D0 is

connected, repeat this process for all other components of D0 to get an element of |H0|

of the form
∑

iD0i + E, for E effective or trivial.

It remains to show that E is nef. Let C be an irreducible curve on V0. Then

E.C = H0.C −D0.C = H0.C −
∑
i

D0i.C. (3.2)

Suppose first that C is a double curve, C = D0j for some j. Then

E.C = E.D0j = −
∑
i

D0i.D0j .

If D0j is nodal then D0j is the only double curve and (D0j |V0)2 ≤ 0, so E.D0j ≥ 0 as

required. Otherwise −
∑

iD0i.D0j = −2 − (D0j |V0)2 and as (D0j |V0)2 ≤ −2, we have

E.D0j ≥ 0 again. So we are done in this case.

Next suppose that C is not double, but that C.D0i = 0 for all i. Then by equation

(3.2), E.C = H0.C ≥ 0.

Thus we are left with the case where C is not double, but has C.D0i > 0 for some

i. Suppose that there exists such a curve with E.C < 0. Then, since E is an effective

divisor on V0, we must have C2 < 0. So, by Lemma 3.3.4, C has C2 = −1 and∑
iD0i.C = 1. By equation (3.2), we get that H0.C = 0. But then C would be a

0-curve meeting D0 but not contained in D0, contradicting the fact that all such curves

were contracted earlier.

Hence there are no irreducible curves C in V0 with E.C < 0, so E is nef as required.
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Let E be defined as in the lemma. Then

E2 = H2
0 − 2H0.D0 + (D0|V0)2 = 2 + (D0|V0)2 ≥ 0,

which gives (D0|V0)2 ≥ −2. Combining this with the Hodge Index Theorem and the

fact that

(D0i|V0)2 ≤


−1 if D0i|V0 is nodal

−2 otherwise,

we see that D0 is either:

• A rational nodal curve with (D0|V0)2 = −1 or −2; or

• A cycle of nonsingular rational curves D0 =
⋃
iD0i, with (D0|V0)2 = −1 or −2

and (D0i|V0)2 ≤ −2 for all i.

Thus, D0 must be either a (−1, r)-cycle, a (−2, r)-cycle or a (−1,−1, r1, r2)-cycle, which

give rise to the corresponding cusp singularities detailed in Proposition 3.1.9.

Remark 3.5.6. Note that almost all of the cusp singularities listed in Proposition 3.1.9

cannot possibly occur, as they require the branch curve to have degree greater than

6. There should be a direct way to prove this, by showing that the corresponding

configurations of double curves cannot occur in a Type III degeneration of K3 surfaces

of degree two.

In the case where D0 is a (−1, r)-cycle and r ≥ 0 is small, a long argument (that

will not be reproduced here) using Looijenga’s explicit classification of anticanonical

rational surfaces [Loo81, Theorem 1.1] shows that if V0 has such a cycle and admits

a polarisation with H2
0 = 2, then D0 must be fixed in the linear system |H0|. This

contradicts Theorem 3.5.2 and shows that such a cycle cannot exist. Similar arguments

show that in the case of a (−2, r)-cycle we get the same contradiction for r ≥ 2 small,

and for a (−1,−1, r1, r2)-cycle we get this contradiction for r1 ≥ 1 or r2 ≥ 1 and r1, r2
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small. However, a direct proof that these singularities cannot occur for general (higher)

values of r is still elusive.

This completes the analysis of the Type III fibres and the proof of Theorem 3.2.2.
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Chapter 4

Constructing the Relative Log

Canonical Model

4.1 Structure of the Relative Log Canonical Algebra

The aim of this chapter is to construct an explicit model for the relative log canonical

model of a semistable terminal threefold fibred by K3 surfaces of degree two. In order

to do this, we will try to emulate the construction of the canonical model for a fibration

by genus 2 curves, given originally by Catanese and Pignatelli [CP06]. As such, the

course of our construction will follow [CP06] quite closely.

We begin by recalling the set up. Let S denote a nonsingular complex curve and let

(X,π,L) be a semistable terminal threefold fibred by K3 surfaces of degree two over S.

By the results of Section 2.4, after twisting the polarisation by OX(Z), for some divisor

Z supported on finitely many fibres of π, we may assume that the invertible sheaf L is

locally π-flat.

Given such a pair (X,L), by the results of Section 2.4 the relative log canonical model

Xc of X is well-defined, and the classification of the fibres of Xc given in Theorem 3.2.2

holds. Unless otherwise specified, for the remainder of this chapter we will assume that
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(X,L) satisfies these properties.

By definition, the general fibre Xs of π : X → S is a K3 surface of degree two with

polarisation induced by LXs , the restriction of L to Xs. Furthermore, by Example 1.1.4,

LXs is generated by its global sections and the general fibre Xs is hyperelliptic.

We are now ready to start our pursuit of an explicit construction for the relative log

canonical model of (X,L). Recall from Chapter 2 that the relative log canonical algebra

of the pair (X,L) is defined to be the graded algebra

R(X,L) =
∞⊕
n=0

En :=
∞⊕
n=0

π∗(ω
n
X ⊗ Ln).

The relative log canonical algebra is useful because, by Theorem 2.4.9, the relative

log canonical model of (X,L) is equal to ProjS(R(X,L)). We will try to find a way

to construct R(X,L) explicitly, which will in turn allow us to construct the relative log

canonical model. First, however, we would like to know more about the structure of

R(X,L).

We begin by noting that, by Lemma 1.3.4, En is a locally free OS-module for all

n ≥ 0.

Next, since the general fibre of X is isomorphic to a double cover of P2, there

exists a birational involution ι on X “swapping the sheets”, i.e. this involution ex-

tends the natural involution (x1, x2, x3, z) 7→ (−x1,−x2,−x3, z) on a general fibre

{z2 = f6(xi)} ⊂ P(1,1,1,3)[x1, x2, x3, z]. We can use this involution to split the relative

log canonical algebra into an invariant and an antiinvariant part. Let U ′ ⊂ S be an

open set. Then U := π−1(U ′) is ι-invariant and ι acts linearly on the space of sections

H0(U, ωnX ⊗Ln) = En(U), which splits as the direct sum of the (+1)-eigenspace and the

(−1)-eigenspace.
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This allows us to decompose En into

En = E+
n ⊕ E−n ,

where E+
n denotes the ι-invariant part and E−n denotes the ι-antiinvariant part. Using

this, we can correspondingly split the relative log canonical algebra as

R(X,L) = R(X,L)+ ⊕R(X,L)−.

Furthermore, observe that R(X,L)+ is a subalgebra of R(X,L), and that R(X,L)− is

an R(X,L)+-module.

This decomposition will turn out to be invaluable when we attempt to construct

R(X,L). We can calculate the ranks of the locally free sheaves E+
n and E−n for n ≥ 1 to

get the following table:

n rank E+
n rank E−n

even (n+1)(n+2)
2

(n−1)(n−2)
2

odd (n−1)(n−2)
2

(n+1)(n+2)
2

Furthermore, we know that E0 = E+
0 = OS and E1 = E−1 .

Next we wish to study the multiplicative structure of R(X,L), paying particular at-

tention to how it interacts with the decomposition above. Let µn,m : En ⊗ Em → En+m

and σn : Symn(E1) → En denote the homomorphisms induced by multiplication in

R(X,L). The maps σn will prove to be particularly useful as, if we can determine

more information about them, we should be able to use them to reconstruct the sheaves

En from E1. We have:

Lemma 4.1.1. The maps σn : Symn(E1) → En are injective for all n ≥ 1 and their

image is contained in E+
n when n is even and in E−n when n is odd.
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Proof. We begin by showing injectivity. Note that it is enough to show that the induced

map of sections

σn(U) : H0(U,Symn(E1)) −→ H0(U, En)

is injective for all open sets U ⊂ S. So let U ⊂ S be any open set. Then let U ′ ⊂ U

be the dense open subset over which the fibres of π are K3 surfaces of degree two. We

first show that the induced map of sections σn(U ′) on U ′ is injective, then use this to

deduce the injectivity of σn(U).

To show that σn(U ′) is injective, it is enough to show that the induced maps on the

fibres of the associated vector bundles

(σn)s : Symn(E1)s ⊗Os k(s)−→(En)s ⊗Os k(s)

are injective for all closed points s ∈ U ′. Choose any such closed point s.

Let Xs denote the fibre of π : X → S over s and Ls be the invertible sheaf induced

on Xs by L. Since ωXs
∼= OXs and Ls is ample, by Serre duality and Kodaira vanishing

h1(Xs,Lns ) = 0 for all s ∈ U ′. So, by the theorem on cohomology and base change

[Mum70, Corollary II.5.2], we have isomorphisms

(En)s ⊗Os k(s) ∼= H0(Xs,Lns ).

Now, since Xs is a K3 surface of degree two with polarisation divisor Ls, Example 1.1.4

shows that we have a natural injection

SymnH0(Xs,Ls) �
�

// H0(Xs,Lns )

which induces (σn)s under the above isomorphism. So (σn)s is injective for all s ∈ U ′,

and hence σn(U ′) is injective.

Finally, since Symn(E1) and En are both torsion free sheaves, the restriction maps
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H0(U,Symn(E1))→ H0(U ′,Symn(E1)) and H0(U, En)→ H0(U ′, En) are both injective.

So the map σn(U) : H0(U,Symn(E1)) → H0(U, En) must be injective, and hence so is

σn.

With this in place, the statement on the images of σn follows immediately from the

fact that E1 = E−1 .

Define Tn := coker(σn) and, using Lemma 4.1.1, write

T +
n := coker(Symn(E1)→ E+

n ) for n even

T −n := coker(Symn(E1)→ E−n ) for n odd.

Then, by Lemma 4.1.1 again, we can decompose

Tn =


T +
n ⊕ E−n for n even

T −n ⊕ E+
n for n odd.

Finally, note that the sheaves T ±n are torsion sheaves.

With this in place, we are ready to begin describing how to construct R(X,L).

4.2 Constructing the Relative Log Canonical Algebra

In this section we embark on the explicit construction of the relative log canonical

algebra R(X,L). In order to do this we follow the construction given by Catanese and

Pignatelli in [CP06]. This will involve constructing a graded subalgebra A of R(X,L)

that is simpler to construct explicitly, and that can act as a “stepping stone” on the

way to the construction of R(X,L).

Before we start, however, it is convenient to explain some of the geometry that

motivates this algebraic approach. As we have mentioned before, the general fibre of

π : X → S is a double cover of P2 ramified over a smooth sextic curve. The construction
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of the K3-Weierstrass model studied in Chapter 1 can be thought of as constructing a

P2-bundle over a Zariski open set S0 ⊂ S, taking a double cover of this ramified over a

divisor that intersects the general fibre in a smooth sextic, then completing across the

gaps. However, as we saw in Example 2.1.1, if π : X → S contains any unigonal fibres

this completion process causes bad singularities to appear in the K3-Weierstrass model.

To explain how we will to solve this problem, we need to be a little more precise

about what is going wrong. Over the dense open set S0, the K3-Weierstrass model can

be seen as a double cover of the P2-bundle on S0 given by ProjS0
(Sym(E1)). The branch

divisor is defined using the cokernel of the map σ3 : Sym3(E1)→ E3, which is locally free

on S0. Unfortunately, we find that if we try to extend this definition to all of S then we

lose the local freeness of the cokernel, so the branch divisor is no longer well-defined.

For this reason, we are forced to perform the construction on S0 and complete to S.

This problem only occurs on fibres where the cokernel of the map σ3 is not locally

free. As we saw above, this cokernel can be written as (T −3 ⊕ E
+
3 ), where T −3 is a

torsion sheaf. Furthermore, as we shall see in Lemma 4.2.1 below, T −3 is supported

exactly on the points of S corresponding to the unigonal fibres. This explains why the

K3-Weierstrass construction fails on these fibres.

To solve this problem, we will construct an algebra A that takes better account of the

properties of the maps σn than Sym(E1) does. Instead of a P2-bundle, ProjS(A) will be

a fibration of S by rational surfaces. We can then try to constructXc = ProjS(R(X,L))

as a double cover of ProjS(A).

However, in order to do this we will need to better understand the maps σn. We

begin by studying the structure of the cokernels Tn. We have the following analogue of

[CP06, Lemma 4.1]:

Lemma 4.2.1. Let (X,π,L) be a semistable terminal threefold fibred by K3 surfaces of

degree two. Suppose further that L is locally π-flat. Then

(1) T2 = T +
2 is isomorphic to the structure sheaf of an effective divisor τ , supported
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on the points of S corresponding to the unigonal fibres of π;

(2) τ determines all the sheaves Tn as follows:

T +
2n
∼=

n⊕
i=1

O⊕(4(n−i)+1)
iτ

T −2n+1
∼=

n⊕
i=1

O⊕(4(n−i)+3)
iτ

Proof. (Following the proof of [CP06, Lemma 4.1]) By Theorem 3.2.2, there are two

possibilities for the log canonical ring of a fibre of π : X → S:

• The fibre is hyperelliptic and its log canonical ring is isomorphic to

C[x1, x2, x3, z]/(z
2 − f6(xi)),

where deg(xi) = 1 and deg(z) = 3.

• The fibre is unigonal and its log canonical ring is isomorphic to

C[x1, x2, x3, y, z]/(z
2 − g6(xi, y), g2(xi)),

where deg(xi) = 1, deg(y) = 2 and deg(z) = 3. Furthermore, as g6(0, 0, 0, 1) 6= 0,

we may assume that the coefficient of y3 in g6 is non-zero and, by completing the

square in the xi, we may also assume that

g2(xi) = x2
1 − x2(ax2 + bx3),

for some a, b ∈ C not both zero.

With this characterisation, we note that xi are the ι-antiinvariant sections and y and

z are ι-invariant. Furthermore, examination of these rings shows that the cokernels Tn

are locally free away from the points whose fibres are unigonal, so the torsion sheaves
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T +
2n and T −2n+1 are supported on these points.

Now, around a point P whose fibre is unigonal, E+
2 is locally generated by the

sections x2
1, x2

2, x2
3, x1x2, x1x3, x2x3 and y. Then, by flatness, if t is a uniformising

parameter for OS,P , we can lift the relation g2 to

g2(t) = x2
1 − x2(ax2 + bx3) + tµ(t)y + tψ(xi, t).

Note that µ(t) is not identically zero, as x1, x2 and x3 are algebraically independent

for t 6= 0. Therefore, after changing coordinates in S, we may assume that µ(t) = tr−1

for a suitable integer r ≥ 1. We call r the multiplicity of the point P . Using this and

the relation above, the stalk of T2 at P is the OS,P -module

T2,P =
(
coker(σ2)

)
P
∼= E+

2,P /im(σ2,P ) ∼= OS,P /(tr),

generated by the class of y.

Define τ to be the divisor on S given by
∑

i riPi, where Pi are the points in S over

which the fibres are unigonal and the ri are the corresponding multiplicities. Then the

stalk Oτ,Pi
∼= OS,Pi/(t

ri) and T2
∼= Oτ . This proves part (1) of Lemma 4.2.1.

Next, we can also choose a lifting of g6 of the form

g6(t) = z2 − g′6(xi, y, t).

Since g6 is ι-invariant, g6(t) must be also, otherwise z would vanish identically on the

fibre over P . By flatness, g2(t) and g6(t) are all the relations of the stalk of R(X,L)

at P .

First consider T −2n+1. Its stalk at P is given by

(T −2n+1)P =
(
coker(σ2n+1)

)
P
∼= E−2n+1,P /im(σ2n+1,P ).
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E−2n+1,P is generated by the 2n2 + 5n+ 3 monomials

{x1h2n(x2, x3, y), h2n+1(x2, x3, y)},

where hi(x2, x3, y) denotes any monomial of degree i in x2, x3 and y. Similarly,

im(σ2n+1,P ) is generated by the 4n+ 3 monomials

{x1h2n(x2, x3), h2n+1(x2, x3)}.

So (T −2n+1)P is generated by the 2n2 + n monomials

{x1yh2n−2(x2, x3, y), yh2n−1(x2, x3, y)}.

These monomials can be listed as

{ynxi} generates O⊕3
nτ,P

{x1y
n−1h2(x2, x3), yn−1h3(x2, x3)} generates O⊕7

(n−1)τ,P

{x1y
n−2h4(x2, x3), yn−2h5(x2, x3)} generates O⊕11

(n−2)τ,P

...

{x1yh2n−2(x2, x3), yh2n−1(x2, x3)} generates O⊕(4n−1)
τ,P

and we see that T −2n+1
∼=
⊕n

i=1O
⊕(4(n−i)+3)
iτ .

By a similar calculation, the stalk of T +
2n at P is given by

(T +
2n)P =

(
coker(σ2n)

)
P
∼= E+

2n,P /im(σ2n,P ).
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E+
2n,P is generated by the 2n2 + 3n+ 1 monomials

{x1h2n−1(x2, x3, y), h2n(x2, x3, y)},

and im(σ2n+1,P ) is generated by the 4n+ 1 monomials

{x1h2n−1(x2, x3), h2n(x2, x3)}.

So (T +
2n)P is generated by the 2n2 − n monomials

{x1yh2n−3(x2, x3, y), yh2n−2(x2, x3, y)}.

These monomials can be listed as

{yn} generates O⊕1
nτ,P

{x1y
n−1h1(x2, x3), yn−1h2(x2, x3)} generates O⊕5

(n−1)τ,P

{x1y
n−2h3(x2, x3), yn−2h4(x2, x3)} generates O⊕9

(n−2)τ,P

...

{x1yh2n−3(x2, x3), yh2n−2(x2, x3)} generates O⊕(4n−3)
τ,P

and we see that T +
2n
∼=
⊕n

i=1O
⊕(4(n−i)+1)
iτ .

This completes the proof of Lemma 4.2.1.

Using Lemma 4.2.1, if we know T2 we can determine all of the cokernels Tn. So

it seems sensible to expect that the structure of R(X,L) might be determined by its

structure in low degrees. With this in mind, we define:

Definition 4.2.2. Let A be the graded subalgebra of R(X,L) generated by E1 and E2.
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Let An denote its graded part of degree n and write

A = Aeven ⊕Aodd =
( ∞⊕
n=0

A2n

)
⊕
( ∞⊕
n=0

A2n+1

)
.

We similarly decompose R(X,L) = Reven ⊕ Rodd. Then we have the following

analogue of [CP06, Lemma 4.3]:

Lemma 4.2.3. R(X,L) is isomorphic to A ⊕ (A[−3] ⊗ E+
3 ) as a graded A-module.

Furthermore, Aeven is the ι-invariant part of Reven and Aodd is the ι-antiinvariant part

of Rodd.

Proof. (Following the proof of [CP06, Lemma 4.3]) We can unify the hyperelliptic and

unigonal cases from the proof of Lemma 4.2.1 by writing the log canonical ring of a

hyperelliptic fibre as

C[x1, x2, x3, y, z]/(y, z
2 − f6(xi)),

where the xi are ι-antiinvariant of degree 1, and y and z are ι-invariant with degrees 2

and 3 respectively. Then in both cases the stalk of A is the subalgebra generated by

x1, x2, x3 and y, so Aeven is ι-invariant and Aodd is ι-antiinvariant.

In both cases, locally on S we may write

R(X,L) ∼= OS [x1, x2, x3, y, z]/(f2(t), f6(t))

with f6(t) = z2 − f ′6(xi, y, t), so locally we have

(1) A ∼= OS [x1, x2, x3, y]/(f2(t)), and

(2) R(X,L) ∼= A⊕ zA.

As z is a local generator of E+
3 , this gives R(X,L) ∼= A⊕ (A[−3]⊗ E+

3 ).

Finally, the statement on the ι-invariant and ι-antiinvariant parts follows from the

fact that Reven
∼= Aeven ⊕ zAodd and Aeven is ι-invariant, and Rodd

∼= Aodd ⊕ zAeven
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and Aodd is ι-antiinvariant.

This completes the proof of Lemma 4.2.3.

ProjS(A) is a fibration of S by rational surfaces. Let πA : ProjS(A)→ S denote the

natural projection map. The inclusion A ⊂ R(X,L) yields a factorisation of π : X → S

as

X
φ
− → Xc = ProjS

(
R(X,L)

) ψ−→ ProjS(A)
πA−→ S.

We will attempt to construct A first, then use the properties of the map ψ to reconstruct

R(X,L).

As A is generated by E1 and E2, we might expect that A can be reconstructed

from the locally free sheaves E1 and E2 and the map σ2 that relates them. The next

proposition, our analogue of [CP06, Lemma 4.4], gives us a way to do this:

Proposition 4.2.4. With notation as above, there are exact sequences

(∗) Sym2(E1 ∧ E1)⊗ Symn−2(E2)
in−→ Symn(E2) −→ A2n −→ 0 (n ≥ 2)

(∗∗) E1 ⊗ (E1 ∧ E1)⊗A2n−2
jn−→ E1 ⊗A2n −→ A2n+1 −→ 0 (n ≥ 1)

where

in
(
(xi ∧ xj)(xk ∧ xl)⊗ r

)
:=
(
σ2(xixk)σ2(xjxl)− σ2(xixl)σ2(xjxk)

)
r,

jn
(
l ⊗ (xi ∧ xj)⊗ r

)
:= xi ⊗

(
σ2(xjl)r

)
− xj ⊗

(
σ2(xil)r

)
.

Furthermore, if n = 2 then sequence (∗) is also exact on the left.

Proof. (Based upon the proof of [CP06, Lemma 4.4]) The maps Symn(E2) → A2n and

E1 ⊗ A2n → A2n+1, induced by the ring structure of A, are surjective because A is

generated in degree ≤ 2 by definition. Since En and An are locally free, the respective

kernels are locally free also. Furthermore, both sequences are complexes, by virtue of

associativity and commutativity in R(X,L).
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It remains to show that (∗) and (∗∗) are exact in the middle. Since the kernels of

the maps to An are locally free, it is enough to prove this on the fibres of the associated

vector bundles.

We begin with sequence (∗). Suppose that f is contained in the kernel of the map

to A2n. We wish to show that f is also in the image of in.

If the fibre of π : X → S over the point under consideration is hyperelliptic, then E2

is generated by the images σ2(xixj) for all i, j ∈ {1, 2, 3}. Express f in terms of these

generators. Then perform the following algorithm on f :

(i) If any monomial of f contains a factor of σ2(x1xi)σ2(x1xj), with i, j ∈ {2, 3},

replace this factor with σ2(x2
1)σ2(xixj).

(ii) Repeat step (i) until it terminates.

(iii) If any monomial of f contains a factor of σ2(x1x3)σ2(x2xi), with i ∈ {2, 3},

replace this factor with σ2(x1x2)σ2(x3xi).

(iv) If any monomial of f contains a factor of σ2(x2x3)σ2(x2x3), replace this factor

with σ2(x2
2)σ2(x2

3).

(v) Repeat step (iv) until it terminates.

(vi) Collect like terms in f and simplify.

Call the result f ′. Note that the kernel of the map to A2n is closed under these opera-

tions, so f ′ is in this kernel. Furthermore, im(in) is also closed under these operations

and their inverses, so f ∈ im(in) if and only if f ′ ∈ im(in).

Now, any monomial in f ′ must have the form

σ2(x2
1)n1,1σ2(x1x2)n1,2σ2(x2

2)n2,2σ2(x2x3)n2,3σ2(x2
3)n3,3σ2(x1x3)n1,3 ,

with n1,2, n2,3, n1,3 ∈ {0, 1} and n1,3 = 1 only if n1,2 = n2,2 = n2,3 = 0. However, under

the map to A2n there are no relations between monomials of this form so, since f ′ is in
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the kernel of this map, f ′ must be the zero polynomial. But 0 ∈ im(in), so f ∈ im(in)

also.

The proof for points corresponding to unigonal fibres is very similar. This time, E2

is generated by y and the images σ2(xixj) for all i, j ∈ {1, 2, 3}, with (i, j) 6= (1, 1). We

perform the same set of operations on f , but with step (i) replaced by

(i’) If any monomial of f contains a factor of σ2(x1xi)σ2(x1xj), with i, j ∈ {2, 3},

replace this factor with (aσ2(x2
2)+bσ2(x2x3))σ2(xixj), where the degree 2 relation

in the unigonal fibre is given by q(x1, x2, x3) = x2
1 − x2(ax2 + bx3) = 0 for some

a, b ∈ C.

Any monomial in the resulting f ′ must have the form

yn0σ2(x1x2)n1,2σ2(x2
2)n2,2σ2(x2x3)n2,3σ2(x2

3)n3,3σ2(x1x3)n1,3 ,

with n1,2, n2,3, n1,3 ∈ {0, 1} and n1,3 = 1 only if n1,2 = n2,2 = n2,3 = 0. With this, the

remainder of the proof proceeds exactly as in the hyperelliptic case.

It remains to show that this sequence is exact on the left when n = 2. This will

again follow from the corresponding statement on the fibres of the associated vector

bundles. As the map induced by i2 on the fibres of the associated vector bundles is

linear, in order to prove that it is injective we need only show that the dimension (as a

complex vector space) of its domain is equal to that of its image. A simple calculation

yields that the dimension of a fibre of A4 is 21, and the dimension of a fibre of Sym2(E2)

is 15. So, as sequence (∗) is exact in the middle, the image of i2 has dimension 6. But

a fibre of Sym2(E1 ∧ E1) also has dimension 6. Hence, i2 is injective and sequence (1) is

exact on the left when n = 2.

Next we consider sequence (∗∗). Given f contained in the kernel of the map to

A2n+1, we wish to show that f is contained in the image of jn.

First consider the case where the fibre of π : X → S over the point under consider-

152



4.2. Constructing the Relative Log Canonical Algebra

ation is hyperelliptic. Then the fibre of the OS-algebra A over this point is isomorphic

to C[x1, x2, x3]. Since the xi form a basis for the fibre of E1, we may write f as

f = x1 ⊗ f1 + x2 ⊗ f2 + x3 ⊗ f3

for some f1, f2, f3 ∈ C[x1, x2, x3] of degree 2n. This maps to x1f1 + x2f2 + x3f3 under

the map to A2n+1, so the condition that f is in the kernel of this map is equivalent to

x1f1 + x2f2 + x3f3 = 0.

Using this equation, we have x1|(x2f2 + x3f3). This implies that f2 and f3 have the

form

f2 = x1 r2(x1, x2, x3) + x3 s23(x2, x3),

f3 = x1 r3(x1, x2, x3)− x2 s23(x2, x3),

for ri, sij ∈ C[x1, x2, x3] of degree (2n−1). Repeating this process for x2 and x3, we get

f1 = x2x3 r1(x1, x2, x3) + x2 s12(x1, x2) + x3 s13(x1, x3),

f2 = x1x3 r2(x1, x2, x3)− x1 s12(x1, x2) + x3 s23(x2, x3),

f3 = x1x2 r3(x1, x2, x3)− x1 s13(x1, x3)− x2 s23(x2, x3),

for ri, sij ∈ C[x1, x2, x3] of degrees (2n− 2) and (2n− 1) respectively. Furthermore, as

f is in the kernel of the map to A2n+1, we must have r1 + r2 + r3 = 0.

Let lij(xi, xj) be any linear factor of sij(xi, xj) and write

sij(xi, xj) = lij(xi, xj) s
′
ij(xi, xj)
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for s′ij ∈ C[x1, x2, x3] of degree (2n− 2). Then we have

f =x1 ⊗ (x2x3 r1 + x2 l12 s
′
12 + x3 l13 s

′
13)+

x2 ⊗ (x1x3 r2 − x1 l12 s
′
12 + x3 l23 s

′
23)+

x3 ⊗ (−x1x2 r1 − x1x2 r2 − x1 l13 s
′
13 − x2 l23 s

′
23)

= jn
(
x2 ⊗ (x1 ∧ x3)⊗ r1 + x1 ⊗ (x2 ∧ x3)⊗ r2 + l12 ⊗ (x1 ∧ x2)⊗ s′12+

l13 ⊗ (x1 ∧ x3)⊗ s′13 + l23 ⊗ (x2 ∧ x3)⊗ s′23

)
.

Hence f ∈ im(jn) and sequence (∗∗) is exact in the middle.

Finally, we have to show that sequence (∗∗) is exact in the middle when the fibre of

π : X → S over the point under consideration is unigonal. In this case, the fibre of the

OS-algebra A over this point is isomorphic to

C[x1, x2, x3, y]

(x2
1 − x2(ax2 + bx3))

=

(
C[x1, x2, x3]

(x2
1 − x2(ax2 + bx3))

)
[y]

for some a, b ∈ C.

Once again, let f denote an element of the kernel of the map to A2n+1. Then, since

the xi form a basis for Ei, we may write

f = x1 ⊗ f1 + x2 ⊗ f2 + x3 ⊗ f3.

Furthermore, using the above characterisation of the fibres of A, without loss of general-

ity we can replace f1, f2 and f3 with their coefficients in C[x1, x2, x3]/(x2
1−x2(ax2+bx3)).

In this ring, we can find uniquely determined expressions

f1 = x1 g1(x2, x3) + h1(x2, x3),

f2 = x1 g2(x2, x3) + h2(x2, x3),
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f3 = x1 g3(x2, x3) + h3(x2, x3),

for gi, hi ∈ C[x2, x3] of degrees (2n − 1) and 2n respectively. With these expressions,

the condition that f be in the kernel of the map to A2n+1 is equivalent to

x1(h1 + x2 g2 + x3 g3) + x2(ax2 + bx3) g1 + x2 h2 + x3 h3 = 0,

which occurs if and only if the following equalities hold:

x2(ax2 + bx3) g1 + x2 h2 + x3 h3 = 0 (4.1)

h1 + x2 g2 + x3 g3 = 0 (4.2)

Equation (4.2) can be analysed by a method similar to that used in the hyperelliptic

case to obtain

h1 = x2x3 rh1(x2, x3) + αx2n
2 + β x2n

3 ,

g2 = x3 rg2(x2, x3)− αx2n−1
2 ,

g3 = x2 rg3(x2, x3)− β x2n−1
3 ,

for rgi , rhi ∈ C[x2, x3] of degree (2n − 2) and α, β ∈ C. Furthermore, by substituting

back into equation (4.2) we must have that rh1 + rg2 + rg3 = 0.

Equation (4.1) is slightly more problematic. From this equation, we must have

x2|x3h3 and x3|(ax2
2 g1 + x2 h2). This means that g1, h2 and h3 have the form

g1 = x3 rg1(x2, x3) + γ x2n−1
2 ,

h2 = x3 rh2(x2, x3)− aγ x2n
2 ,

h3 = x2 rh3(x2, x3),
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for rgi , rhi ∈ C[x2, x3] of degrees (2n − 2) and (2n − 1) respectively, and γ ∈ C. By

substituting back into equation (4.1) we obtain (ax2 +bx3) rg1 +rh2 +rh3 +bγ x2n−1
2 = 0.

Finally, let lh2(x2, x3) be a linear factor of rh2(x2, x3), so that

rh2(x2, x3) = lh2(x2, x3) r′h2
(x2, x3),

for some r′h2
∈ C[x2, x3] of degree (2n− 2).

Putting all of this together, we get that

f =x1 ⊗
(
x1(x3 rg1 + γ x2n−1

2 ) + x2x3 rh1 + αx2n
2 + β x2n

3

)
+

x2 ⊗
(
x1(x3 rg2 − αx2n−1

2 ) + x3 lh2 r
′
h2
− γ(ax2 + bx3)x2n−1

2 + bγ x3x
2n−1
2

)
+

x3 ⊗
(
x1(−x2 rg2 − x2 rh1 − β x

2n−1
3 )− x2(ax2 + bx3) rg1 − x2 lh2 r

′
h2
− bγ x2n

2

)
= jn

(
x1 ⊗ (x1 ∧ x3)⊗ rg1 + x1 ⊗ (x1 ∧ x2)⊗ γ x2n−2

2 + x2 ⊗ (x1 ∧ x3)⊗ rh1+

x2 ⊗ (x1 ∧ x2)⊗ αx2n−2
2 + x3 ⊗ (x1 ∧ x3)⊗ β x2n−2

3 + x1 ⊗ (x2 ∧ x3)⊗ rg2+

lh2 ⊗ (x2 ∧ x3)⊗ r′h2
+ x2 ⊗ (x2 ∧ x3)⊗ bγ x2n−2

2

)
Thus, f is in the image of jn and sequence (∗∗) is exact in the middle. This completes

the proof of Proposition 4.2.4.

The exact sequences (∗) and (∗∗) in Proposition 4.2.4 allow us to describe Aeven as

a quotient algebra of Sym(E2) and Aodd as an Aeven-module. The multiplication map

Aodd ×Aodd → Aeven is induced by the composition

E1 ⊗ E1
µ1,1−→ Sym2(E1)

σ2−→ E2.

Thus, A is completely determined as an OS-algebra by the locally free sheaves E1 and

E2 and the map σ2 : Sym2(E1)→ E2.

The structure of Aeven as a quotient algebra of Sym(E2) gives a Veronese embedding
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of ProjS(A) into PS(E2) that commutes with the projection to S. The projective space

bundle PS(E2) comes equipped with natural invertible sheaves O(n) for all n ∈ Z, which

induce invertible sheaves OProjS(A)(2n) on ProjS(A).

Now that we have a way to construct A, we would like to find a way to reconstruct

R(X,L) from it. By Lemma 4.2.3, we can already construct R(X,L) as an A-module.

However, we need to give R(X,L) a multiplicative structure to make it into an A-

algebra. In order to do this, we need to determine the multiplication map from E+
3 ⊗E

+
3

to E6. By Lemma 4.2.3, this multiplication map has image contained in A6. So the ring

structure on R(X,L) induces a map

β : (E+
3 )2 −→ A6.

To determine β, we will study the map ψ : Xc → ProjS(A). First, however, we

need a definition.

Definition 4.2.5. Let P be a point in the support of τ . The fibre of ProjS(A) over P

is of the form

{x2
1 − x2(ax2 + bx3) = 0} ⊂ P(1,1,1,2)[x1, x2, x3, y].

This is a quadric cone and is singular at the point (0 :0 :0 :1).

Taking all such singular points associated to the points of Supp(τ), we get a subset of

ProjS(A) that we will denote by P. Note that the projection onto S maps P bijectively

onto Supp(τ).

Then we have the following analogue of [CP06, Theorem 4.7]:

Proposition 4.2.6. Xc = ProjS(R(X,L)) is a double cover of ProjS(A), with branch

locus consisting of the set of isolated points P together with the divisor BA in the linear

system |OProjS(A)(6)⊗ π∗A(E+
3 )−2| determined by β (BA is thus disjoint from P).
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Proof. (Following the proof of [CP06, Theorem 4.7]) Note first that ψ : Xc → ProjS(A)

is a double cover by Lemma 4.2.3. It just remains to calculate the branch locus of ψ.

Since the question is local on S, we may use the same method as in the proof of

Lemma 4.2.3 and restrict to an affine open set S0 over which Xc is isomorphic to the

subscheme of P(1,1,1,2,3)[x1, x2, x3, y, z]× S0 defined by the equations

f2(x1, x2, x3, y, t) = 0, z2 = f6(x1, x2, x3, y, t),

where t is a parameter on S0. Furthermore, we note that if x1 = x2 = x3 = y = 0 then

z = 0, which is impossible, so the xi’s and y cannot simultaneously vanish.

At a point where xi 6= 0 for some i, we can localise both equations by dividing by

x2
i , respectively by x6

i . Then z = 0 is the ramification divisor and f6 = 0 is the branch

locus. This equation defines exactly the divisor BA ⊂ ProjS(A).

At a point where x1 = x2 = x3 = 0, we may assume that y = 1 and we have a point

of P. Note that, since the points (0 : 0 : 0 : 1 : a) and (0 : 0 : 0 : 1 :−a) are identified in

P(1, 1, 1, 2, 3) for any a ∈ C, this point must be a branch point of ψ. Furthermore, by

Theorem 3.2.2, f6 cannot vanish at such a point, so BA is disjoint from P.

Putting the results of this section together, we can list the data required to construct

the relative log canonical model of a semistable terminal threefold fibred by K3 surfaces

of degree two.

Definition 4.2.7. Let (X,π,L) be a semistable terminal threefold fibred by K3 surfaces

of degree two over a nonsingular curve S and suppose further that L is locally π-flat.

Then define the associated 5-tuple of the pair (X,L) over S, denoted (E1, τ, ξ, E+
3 , β),

as follows:

• E1 = π∗(ωX ⊗ L).

• τ is the effective divisor on S whose structure sheaf is isomorphic to T2.
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• ξ ∈ Ext1
OS

(Oτ ,Sym2(E1))/AutOs(Oτ ) is the isomorphism class corresponding to

the pair (E2, σ2) in the sequence

0 −→ Sym2(E1)
σ2−→ E2 −→ Oτ −→ 0.

• E+
3 is the ι-invariant part of π∗(ω

3
X ⊗ L3).

• β ∈ P(H0(S,A6⊗ (E+
3 )−2)) ∼= |OProjS(A)(6)⊗π∗A(E+

3 )−2| is the class of a section

with associated divisor BA.

Remark 4.2.8. We need one more piece of data than Catanese and Pignatelli [CP06]:

the line bundle E+
3 . This is because they construct the relative log canonical model

of the pair (X, 0), but we are constructing the relative log canonical model of the pair

(X,L). The extra data in our case is needed to determine the polarisation divisor L.

4.3 A Generality Result

In this section we will give a method, based upon the results of Section 4.2, to construct

relative log canonical models of semistable terminal threefolds fibred by K3 surfaces of

degree two, and prove a result about the generality of this construction.

Fix a nonsingular complex curve S. We begin with a 5-tuple of data (E1, τ, ξ, E+
3 , β)

on S, defined by:

• E1 is a rank 3 vector bundle on S.

• τ is an effective divisor on S.

• ξ ∈ Ext1
OS

(Oτ ,Sym2(E1))/AutOs(Oτ ) yields a vector bundle E2 on S and a map

σ2 : Sym2(E1)→ E2.

• E+
3 is a line bundle on S.
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• β ∈ P(H0(S,A6 ⊗ (E+
3 )−2)), where A6 is defined using E1, E2, σ2 and the exact

sequences of Proposition 4.2.4.

Given this data, we begin by constructing a sheaf of OS-algebras A using the exact

sequences of Proposition 4.2.4. Then we may define a sheaf of OS-algebras

R := A⊕ (A[−3]⊗ E+
3 ),

with multiplicative structure induced by A and the map (E+
3 )2 → A6 defined by β.

Definition 4.3.1. We say that a 5-tuple (E1, τ, ξ, E+
3 , β) is admissible if the sheaf of

algebras R constructed from it satisfies the following conditions:

(i) Let BA be the divisor of β on ProjS(A); then BA does not contain any point

of the set P defined in 4.2.5.

(ii) ProjS(R) has at worst canonical singularities.

(iii) There exists an analytic resolution f : Y → ProjS(R) that modifies only

finitely many fibres of πR : ProjS(R) → S, such that all fibres of πR ◦ f are

semistable.

We have the following generality result, analogue of [CP06, Theorem 4.12]:

Theorem 4.3.2. Fix a nonsingular complex curve S. Let (X,π,L) be a semistable

terminal threefold fibred by K3 surfaces of degree two and suppose further that L is

locally π-flat. Then the associated 5-tuple of the pair (X,L) is admissible.

Conversely, let R be a sheaf of OS-algebras defined by an admissible 5-tuple of data

(E1, τ, ξ, E+
3 , β) on S. Then there exists a semistable terminal threefold fibred by K3

surfaces of degree two (X,π,L) with L locally π-flat, such that ProjS(R) is the relative

log canonical model of the pair (X,L) and (E1, τ, ξ, E+
3 , β) is its associated 5-tuple.

Remark 4.3.3. This theorem provides a bijection between admissible 5-tuples and

relative log canonical models of semistable terminal threefolds fibred by K3 surfaces of
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degree two. Note, however, that there may be many birationally equivalent semistable

terminal threefolds fibred by K3 surfaces of degree two that all have the same relative

log canonical model, and so determine the same associated 5-tuple.

This is closely related to the so-called “flop problem”, i.e. the fact that in dimension

≥ 3 minimal models are not unique, but merely isomorphic in codimension one. The flop

problem means that, whilst a given threefold determines a unique canonical model, it

may have many different minimal models. In our case, the minimal models correspond

to different semistable terminal threefolds fibred by K3 surfaces of degree two that

determine the same relative log canonical model. Further details may be found in

[KM98, Section 3.8].

Remark 4.3.4. The fact that the singularities appearing in the relative log canonical

model Xc of (X,L) are at worst canonical fits nicely with the fact (Corollary 3.2.4)

that the singularities occurring in the fibres of Xc are at worst semi log canonical. The

relationship between these two types of singularities is given by Kollár and Shepherd-

Barron [KSB88, Theorem 5.1], who show that if X → ∆ is a Gorenstein one-parameter

deformation of a surface X0 that admits a semistable resolution, then X has canonical

singularities if and only if X0 has semi log canonical surface singularities and the general

fibre has at worst rational double points.

Proof. We begin by letting (X,π,L) be a semistable terminal threefold fibred by K3

surfaces of degree two over S, such that L is locally π-flat. We want to show that the

associated 5-tuple of (X,L) is admissible. Note that condition (i) in the definition of

admissible follows immediately from Proposition 4.2.6.

To show that the remaining two conditions hold, we will use the locally Kulikov

model constructed in Section 2.4. Recall that given π : X → S as above, we may find

π′′ : X ′′ → S birational to X over S and a locally π′′-flat line bundle L′′ on X ′′, such that

(X,L) and (X ′′,L′′) define the same relative log canonical algebra over S, and hence the

same associated 5-tuple. Furthermore, the natural map φ′′ : X ′′ → Xc from X ′′ to the
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relative log canonical model Xc is a morphism. As X ′′ is nonsingular and semistable,

and φ′′ is an isomorphism outside of finitely may fibres, this proves condition (iii).

It remains to show that Xc has at worst canonical singularities. In order to do this,

it is enough to look locally around any fibre of π′′. So let s ∈ S be any closed point, and

let Us be an open neighbourhood of s. Define X ′′Us
:= π′′ −1(Us). By the local π′′-flatness

property, we can find a divisor Hs that is flat over Us in the linear system defined on

X ′′Us
by L′′. Furthermore, as Us is open, the relative log canonical model X ′′ cUs

of the

pair (X ′′Us
,OX′′Us

(Hs)) agrees with the relative log canonical model of (X ′′,L′′) over Us.

So it suffices to show that X ′′ cUs
has at worst canonical singularities for all s.

In order to do this, note first that the intersection of Hs with a general fibre is

irreducible so, since Hs is flat over Us, we must have Hs irreducible. Thus, as X ′′Us
is

nonsingular, by Proposition 2.1.5, discrep(X ′′Us
, Hs) = 0. So, as no components of H

are contracted by φ′′, by [KM98, Proposition 3.51] we see that discrep(X ′′ cUs
, φ′′+Hs) ≥ 0

and the log pair (X ′′ cUs
, φ′′+Hs) is canonical. But φ′′+Hs is effective on X ′′ cUs

so, by [KM98,

Corollary 2.35], the log pair (X ′′ cUs
, 0) is also canonical and X ′′ cUs

has at worst canonical

singularities. This proves condition (ii).

Next we prove the converse statement. Let R be a sheaf of OS-algebras defined

by an admissible 5-tuple (E1, τ, ξ, E+
3 , β). Define Y := ProjS(R) and let πY : Y → S

denote the natural projection. As in the proof of Lemma 4.2.3, over an affine open

set U ⊂ S we can view Y as a subvariety in P(1, 1, 1, 2, 3) × S0. Furthermore, by the

local description in Lemma 4.2.1 we see that Y does not intersect the singular locus

and that ωY |π−1
Y (U) is trivial. Therefore Y is Gorenstein and over each such open set

the sheaf O(1) induced on Y by the weighted projective space structure is invertible.

These invertible sheaves glue to give a invertible sheaf OY (1) on Y . Thus, the sheaf

OY (1)⊗ ω−1
Y is invertible and, by the local description of Y in Lemma 4.2.1, this sheaf

is locally πY -flat and induces an ample invertible sheaf with self-intersection number

two on a general fibre of πY .
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By condition (iii) in the definition of an admissible 5-tuple, we may find a semistable

(analytic) resolution f : Y → Y that is an isomorphism outside of finitely many fibres.

Let π := πY ◦ f . Then, we have:

Lemma 4.3.5. With notation as above, we may find a locally π-flat line bundle L on

Y making (Y , π,L) into a semistable analytic threefold fibred by K3 surfaces of degree

two over S. Furthermore, L may be chosen such that the relative log canonical algebra

R(Y ,L) is equal to R.

Proof. We begin by defining the polarisation L. Choose an ample invertible sheafM on

S. Then for some m > 0, the sheaf (πY )∗(OY (1)⊗ω−1
Y )⊗Mm is generated by its global

sections. Let H denote a general member of the linear system |OY (1)⊗ ω−1
Y ⊗ π∗YMm|

and define L := OY (f−1
+ H)⊗π∗M−m. Then, as f is an isomorphism outside of finitely

many fibres, (Y , π,L) has the structure of a semistable analytic threefold fibred by K3

surfaces of degree two over S. It just remains to show that L is locally π-flat and R is

the relative log canonical algebra of (Y ,L).

In order to do this, we begin by showing that H may be chosen to avoid the worst

singularities of Y . Specifically, we want to avoid singularities that are not compound

Du Val :

Definition 4.3.6. [KM98, 5.32] Let 0 ∈ Y be a threefold singularity. We say that it

is a compound Du Val singularity if a general hypersurface section 0 ∈ H ⊂ Y is a

rational double point (i.e. a Du Val singularity).

We start by examining the linear system |OY (1) ⊗ ω−1
Y ⊗ π∗YMm| in which H

moves. Note that as (πY )∗(OY (1) ⊗ ω−1
Y ) ⊗Mm is generated by its global sections,

for any affine open set U ⊂ S the sections in H0(Y,OY (1) ⊗ ω−1
Y ⊗ π∗YMm) generate

H0(π−1
Y (U),OY (1)⊗ω−1

Y ⊗π∗YMm) as an Oπ−1
Y (U)-module, so we may study this linear

system locally over S.
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Let U ⊂ S be an affine open set. Then as in the proof of Lemma 4.2.3, we can view

π−1
Y (U) as a complete intersection

π−1
Y (U) ∼= {f2(t) = f6(t) = 0} ⊂ P(1, 1, 1, 2, 3)× U.

As M|U ∼= OU , we have π∗YMm|π−1
Y (U)

∼= Oπ−1
Y (U) and, since ωY |π−1

Y (U) is trivial, the

restriction of (OY (1) ⊗ ω−1
Y ⊗ π∗YMm) to π−1

Y (U) is just the sheaf induced from O(1)

on P(1, 1, 1, 2, 3) × U . Furthermore, by the local descriptions of f2(t) and f6(t) given

in Lemma 4.2.1, we see that this sheaf defines a linear system on π−1
Y (U) that has no

fixed components and is base point free outside of the points over the set P defined

in 4.2.5. Thus, as H0(π−1
Y (U),OY (1) ⊗ ω−1

Y ⊗ π∗YMm) is generated as an Oπ−1
Y (U)-

module by the sections in H0(Y,OY (1)⊗ ω−1
Y ⊗ π∗YMm), we see that the linear system

|OY (1) ⊗ ω−1
Y ⊗ π∗YMm| has no base points or fixed components on Y outside of the

points over the set P.

As Y has at worst canonical singularities, by [KM98, Corollary 5.40] all but finitely

many of the singular points are compound Du Val. So, apart from the points lying over

the set P, we may assume that the only singularities of Y lying on H are compound

Du Val. Furthermore, by Bertini’s theorem we may assume that H is irreducible and

nonsingular outside of the singular points of Y and the points lying over P. In particular

H cannot contain any components of fibres, so is horizontal and thus flat over S by the

proof of Proposition 2.4.7. This proves the local π-flatness of L.

Our next step is to show that, with H chosen as above, the log pair (Y,H) is

canonical. This will follow from [KM98, Theorem 5.34] if we can show that all of the

singularities in H are rational double points. By the argument above, these singularities

arise from compound Du Val points and points lying over P. At a compound Du Val

point, the singularity in H is a rational double point by definition. So it just remains

to classify the singularities lying over the points of P.

164



4.3. A Generality Result

By the proof of Lemma 4.2.1, after a change of coordinates locally we can write

ProjS(A) as

{f2(t) = 0} ⊂ P(1,1,1,2)[x1, x2, x3, y]× U,

where

f2(t) = x2
1 − x2(ax2 + bx3) + try + tψ(xi, t)

for some a, b ∈ C that are not both zero and t a local parameter on the affine open

set U ⊂ S. The weighted projective space structure induces a rank one reflexive sheaf

OProjS(A)(1) locally on ProjS(A), a general section of which defines a Weil divisor that

has a rational double point singularity of type A2r+1 at the point (0 :0 :0 :1 ; 0). As BA

does not contain any point of P, around the point (0 : 0 : 0 : 1 ; 0) we have that Y is a

cyclic double cover of ProjS(A) ramified over the point (0 : 0 : 0 : 1 ; 0). Thus a divisor

defined by a general section of OY (1) is a cyclic double cover of a divisor defined by

a general section of OProjS(A)(1) ramified over the singularity. Therefore, by [KM98,

Theorem 5.43], the general section of OY (1) has a rational double point singularity of

type Ar.

Thus, we may assume that the only singularities occurring in H are rational double

points, so by [KM98, Theorem 5.34] the log pair (Y,H) is canonical. Therefore, by

definition we must have

ωY ⊗OY (f−1
+ H) ∼= f∗(ωY ⊗OY (H))⊗OY (E),

for some effective and f -exceptional E. But by the projection formula this implies that

f∗
(
ωn
Y
⊗OY (f−1

+ H)n
) ∼= ωnY ⊗OY (nH)
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for all n > 0. Finally, twisting by π∗YM−m and noting that π = πY ◦ f , we see that

π∗
(
ωn
Y
⊗OY (f−1

+ H)n ⊗ π ∗M−mn
) ∼= (πY )∗

(
ωnY ⊗OY (nH)⊗ π∗YM−mn

)
for all n > 0. This gives

π∗
(
ωn
Y
⊗ Ln

) ∼= (πY )∗OY (1)n

for all n > 0, so the relative log canonical algebra of (Y ,L) is equal toR, as required.

We now return to the proof of Theorem 4.3.2. Let (Y , π,L) be defined as in Lemma

4.3.5. Then by the same process as was used in Section 2.4 we may find π′′ : Y ′′ → S

birational to Y over S and a locally π′′-flat line bundle L′′ on Y ′′ making (Y ′′, π′′,L′′)

into a semistable analytic threefold fibred by K3 surfaces of degree two, such that Y ′′

is locally Kulikov, L′′ is π′′-nef, R is the relative log canonical algebra of (Y ′′, π′′,L′′)

and the map φ′′ : Y ′′ → Y is a birational morphism.

Then, using Theorem 2.4.1, we may find a divisor D supported on the singular fibres

of π′′ such that (L′′)N ⊗OY ′′(D) defines a birational morphism

φt : Y ′′ −→ X ⊂ PS
(
π′′∗
(
L′′N ⊗OY ′′(D)

))
over S that contracts only finitely many curves, all of which are contained in fibres

of π′′. Furthermore, examining the proof of this theorem (see [SB83b, Section 2]) we

see that any curve C contracted by φt has L′′.C = 0. So the morphism φ′′ factorises

through φt. We have a diagram:

Y

f

��

// Y ′′

φ′′

��

φt

  

X

φ
}}

Y
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Define π := πY ◦ φ. We claim that π : X → S is a terminal semistable K3-fibration and

that there exists a locally π-flat polarisation L on X making (X,π,L) into a semistable

terminal threefold fibred by K3 surfaces of degree two, such that the pair (X,L) has

relative log canonical algebra R(X,L) = R. As R uniquely determines the 5-tuple

(E1, τ, ξ, E+
3 , β), this will be enough to prove Theorem 4.3.2.

To see that π : X → S is a terminal semistable K3-fibration, note that by construc-

tion X has Gorenstein terminal singularities, φt : Y ′′ → X is a small analytic resolution

with Y ′′ semistable and the fibres of π are all reduced divisors with normal crossings

outside of the singular points of X.

Now define a sheaf L := φt∗L′′ on X. We claim that L is invertible. If so, L is clearly

locally π-flat, since L′′ is. Furthermore, (X,π,L) and (Y ′′, π′′,L′′) agree over an open

set of S, so (X,π,L) is a semistable terminal threefold fibred by K3 surfaces of degree

two.

Lemma 4.3.7. With definitions as above, L ∼= φ∗(OY (1)⊗ω−1
Y ). In particular, L is an

invertible sheaf on X.

Proof. In order to prove this we will show that L′′ ∼= (φ′′)∗(OY (1) ⊗ ω−1
Y ); the result

then follows by the projection formula and the fact that φ′′ = φ ◦ φt.

So consider L′′. Define a Cartier divisor H on Y that is flat over S and an invertible

sheaf M on S as in the proof of Lemma 4.3.5. Then, by construction,

L′′ ∼= OY ′′
(
(φ′′)−1

+ H
)
⊗ (π′′)∗M−m.

Since OY (1)⊗ω−1
Y
∼= OY (H)⊗ π∗YM−m, the proof of the lemma will be complete if we

can show that OY ′′((φ′′)−1
+ H) ∼= (φ′′)∗OY (H). This will follow from the facts that the

log pair (Y,H) is canonical and Y ′′ is locally Kulikov.

Write

(φ′′)∗OY (H) ∼= OY ′′
(
(φ′′)−1

+ H
)
⊗OY ′′(E),
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for some effective and φ′′-exceptional E. Then, since both ωY and ωY ′′ are trivial in a

neighbourhood of any fibre, we must have ωY ′′ ∼= (φ′′)∗ωY (i.e. φ′′ is crepant). Putting

this together we get

ωY ′′ ⊗OY ′′
(
(φ′′)−1

+ H
) ∼= (φ′′)∗

(
ωY ⊗OY (H)

)
⊗OY ′′(−E).

But (Y,H) is canonical, so −E must be effective. Hence, E = 0 and we have proved

that OY ′′((φ′′)−1
+ H) ∼= (φ′′)∗OY (H), as required. This completes the proof of Lemma

4.3.7.

Thus, (X,π,L) is a semistable terminal threefold fibred by K3 surfaces of degree

two and L is locally π-flat. Finally, from Lemma 4.3.7 we see that L ∼= φ∗(OY (1)⊗ω−1
Y )

and, since both ωX and ωY are trivial in a neighbourhood of any fibre, we must have

ωX ∼= φ∗ωY . Thus, by the projection formula and the fact that π = πY ◦ φ we see that

π∗(ω
n
X ⊗ Ln) ∼= (πY )∗OY (1)n

for all n ≥ 0, so the relative log canonical algebra of (X,L) is equal to R, as required.

This completes the proof of Theorem 4.3.2.
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Chapter 5

Properties of the Constructed

Threefolds

5.1 The Canonical Sheaf and the Kodaira Dimension

In this chapter we aim to explicitly calculate the properties of the threefolds constructed

in Chapter 4 as the relative log canonical models of threefolds fibred by K3 surfaces of

degree two, and of certain resolutions of them.

We begin by setting up some notation. Let S be a nonsingular curve. As in Section

4.3, we begin with an admissible 5-tuple of data (E1, τ, ξ, E+
3 , β) on S and use this to

construct a sheaf of OS-algebras R. Define X := ProjSR and let π : X → S be the

natural projection.

By the proof of Theorem 4.3.2, there are two “nice” resolutions of X. First, there

is a semistable terminal threefold fibred by K3 surfaces of degree two (Xt, πt,Lt) (this

is the threefold constructed in the statement of Theorem 4.3.2), such that Lt is πt-nef

and locally πt-flat, X is the relative log canonical model of (Xt,Lt) over S, and the

birational map φ : Xt → X is a crepant morphism (i.e. ωXt ∼= φ∗ωX).

Second, there is a semistable smooth analytic threefold fibred by K3 surfaces of
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degree two (Y, πY ,LY ) (called Y ′′ in the proof of 4.3.2), such that Y is locally Kulikov,

LY is πY -nef and locally πY -flat, X is the relative log canonical model of (Y,LY ) over S,

and the birational map φY : Y → X is a morphism. Furthermore, Y is a small analytic

resolution of Xt.

We have a diagram:

Y
f

//

φY ��

πY

$$

Xt

φ~~

πt

yy

X

π
��

S

With this in place, we are ready to begin our calculation of the canonical sheaves

of these threefolds. We note first that, as φ is a crepant morphism and f is a small

resolution, we have the relations ωXt ∼= φ∗ωX and ωY ∼= f∗ωXt . So we may easily derive

the canonical sheaves of all of the threefolds above from the canonical sheaf of X. This

is calculated by:

Theorem 5.1.1. The canonical sheaf ωX is given by

ωX ∼= π∗
(
ωS ⊗ det(E1)⊗OS(τ)⊗ (E+

3 )−1
)
.

Remark 5.1.2. This formula agrees nicely with the results of Fujino and Mori [FM00]

[Fuj03], who prove that the canonical divisor on X should have the form

KX ∼ π∗(KS +D) +B,

for divisors D on S and B on X that satisfy certain conditions. As KX is locally

trivial in a neighbourhood of any fibre, it follows from the description of B given

in [FM00] that B must vanish in our case. The theorem above then gives us that

OS(D) ∼= det(E1)⊗OS(τ)⊗ (E+
3 )−1.
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5.1. The Canonical Sheaf and the Kodaira Dimension

Proof. Recall from Section 4.2 that we can decompose the projection π : X → S into

X := ProjSR
ψ−→ ProjSA

πA−→ S,

where ψ is the double cover with branch locus given by Proposition 4.2.6. Define

Z := ProjSA. We will use the decomposition above to calculate the canonical sheaf

of X in terms of the canonical sheaf of Z, which will turn out to be easier to calculate

explicitly.

As X and Z have at worst canonical singularities, the adjunction formula for finite

double covers gives

ωX ∼= ψ∗
(
ωZ ⊗OZ(3)⊗ π∗A(E+

3 )−1
)
. (5.1)

Thus it just remains to calculate ωZ . We will achieve this by embedding Z into a certain

weighted projective bundle (see Section 1.2 for definitions), then using adjunction. We

begin with a lemma:

Lemma 5.1.3. Let M be an invertible sheaf on S. As in Definition 1.2.2, denote by

S̃ym(E1⊕M) the weighted symmetric algebra of E1⊕M, where we insist that E1 (resp.

M) have homogeneous degree 1 (resp. 2) in S̃ym(E1 ⊕M), and let S̃ym
m

(E1 ⊕M)

denote its mth graded part. Then if M is chosen such that M−1 is sufficiently ample,

there are exact sequences

0 −→ OS(−τ)⊗M⊗ S̃ym
n−2

(E1 ⊕M) −→ S̃ym
n
(E1 ⊕M) −→ An −→ 0

for all n ≥ 2.

Remark 5.1.4. These sequences can be used as an alternative to those given by Propo-

sition 4.2.4 when constructing the sheaf of algebras A. The pair (E2, σ2) is determined

by the choice of homomorphism M⊗OS(−τ)→ Sym2(E1).

Proof. Note first that, by Lemma 4.2.3, we have that A2n = E+
2n and A2n+1 = E−2n+1
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0

��

0

��

M⊗OS(−τ)

��

M⊗OS(−τ)

��

0 // Sym2(E1) // Sym2(E1)⊕M //

f2

��

M //

g2

��

0

0 // Sym2(E1)
σ2 // E2

//

��

Oτ //

��

0

0 0

Figure 5.1.

for all n ≥ 1. So, by the argument at the end of Section 4.1, for each n ≥ 1 we have an

exact sequence

0 −→ Symn(E1)
σn−→ An −→ T ±n −→ 0,

where, by Lemma 4.2.1,

T ±n :=

bn
2
c⊕

i=1

O⊕(2(n−2i)+1)
iτ

We begin by proving the theorem for n = 2, then generalise this proof to work for

higher values of n. The case n = 2 is proved by showing that we have a commutative

diagram with exact rows and columns as shown in Figure 5.1.

Exactness of the bottom row of this diagram is given above. Furthermore, the middle

row is a split exact sequence and the right-hand column is given by the tensor product

of the short exact sequence

0 −→ OS(−τ) −→ OS −→ Oτ −→ 0

with the invertible sheaf M. Thus it just remains to define a morphism f2 that makes

the whole diagram commute; surjectivity of f2 and the expression for ker(f2) will then
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5.1. The Canonical Sheaf and the Kodaira Dimension

follow immediately from the snake lemma.

We will define f2 separately on each of the factors of Sym2(E1)⊕M. It is easy to see

that the restriction f2 : Sym2(E1)→ E2 must be equal to σ2. Then the left hand square

of Figure 5.1 will obviously commute. Unfortunately, we shall see that the restriction

f2 : M→ E2 is somewhat more tricky to define.

Applying the left exact functor Hom(M,−) to the short exact sequence in the

bottom row of Figure 5.1, we obtain a long exact sequence

· · · −→ Hom(M, E2) −→ Hom(M,Oτ ) −→ Ext1(M, Sym2(E1)) −→ · · · .

Furthermore, by standard properties of Ext groups [Har77, Section II.6], we have an

isomorphism

Ext1(M,Sym2(E1)) ∼= H1(S,M−1 ⊗ Sym2(E1)).

But ifM−1 is chosen sufficiently ample, [Har77, Proposition III.5.3] shows that this co-

homology group vanishes. So the morphism Hom(M, E2)→ Hom(M,Oτ ) is surjective.

Therefore, we may find f̄2 ∈ Hom(M, E2) that maps to g2 under this morphism. Define

the restriction f2 : M → E2 to be equal to f̄2. Then the bottom right-hand square of

Figure 5.1 commutes by construction.

Thus we see that Figure 5.1 is a commutative diagram with exact rows and columns,

and the required exact sequence can be read off from the middle column.

In order to prove the result for n > 2, we will show that for each such n there is a

commutative diagram with exact rows

0 // Symn(E1) // S̃ym
n
(E1 ⊕M) //

fn

��

S̃ym
n−2

(E1 ⊕M)⊗M //

gn

��

0

0 // Symn(E1)
σn // An // T ±n // 0.

(5.2)

Exactness of the bottom row is proved above. Thus it just remains to prove that the top
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row is exact and to define morphisms fn and gn that make the whole diagram commute.

First consider the case where n is even, n = 2m (m > 1) say. Then there is an

isomorphism

S̃ym
2m

(E1 ⊕M) ∼=
m⊕
i=0

Sym2i(E1)⊗Mm−i.

From this expression it is immediately clear that the top row of diagram (5.2) is exact

and split. We will define the maps f2m and g2m using the map f2 defined above.

Note first that the restriction f2 : M→ E2 induces a morphism Mm → Symm(E2).

Composing this with the map Symm(E2) → A2m given by the exact sequence (∗) from

Proposition 4.2.4, we obtain a morphism f̄2m : Mm → A2m. Define the restriction of

f2m to the factor Sym2i(E1)⊗Mm−i for each 0 ≤ i ≤ m by

f2m,i : Sym2i(E1)⊗Mm−i −→ A2m

a⊗ b 7−→ σ2m(a).f̄2m−2i(b),

so that f2m :=
∑m

i=0 f2m,i. Finally, define g2m as the composition of the restriction

f2m : S̃ym
2m−2

(E1 ⊕M) ⊗M → A2m with the map A2m → T ±2m. Then diagram (5.2)

commutes by construction.

It just remains to show that g2m is surjective and to compute its kernel. In order to

do this we will work locally on the stalks of the sheaves involved.

Around a point P not in the support of τ , we see that the stalk T ±2m,P is zero, so

g2m,P is surjective and its kernel is locally S̃ym
2m−2

(E1,P ⊕MP )⊗MP .

So consider a point P in the support of τ . Then, by the proof of Lemma 4.2.3,

locally around P we may write

AP ∼= OS,P [x1, x2, x3, y]/(Q(t)),

where the xi are considered to have degree 1, y has degree two and Q(t) is a degree two
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5.1. The Canonical Sheaf and the Kodaira Dimension

relation between them (that depends upon a uniformising parameter t for OS,P ). Note

that E1,P is generated by x1, x2, x3.

Furthermore, by the proof of Lemma 4.2.1, we see that y is a local generator of Oτ,P .

As we know that g2,P : MP → Oτ,P is surjective, there must exist ȳ ∈MP mapping to

y ∈ Oτ,P under g2,P . We will use this and the explicit description of the generators of

T ±2m,P from Lemma 4.2.1 to show that g2m,P is surjective for all m.

Using the direct sum decompositions of S̃ym
2m−2

(E1,P ⊕M) and T ±2m,P given above,

we see that in order to prove that g2m,P is surjective it is enough to show that the

restrictions

gi2m,P : Sym2i(E1)⊗Mm−i −→ O⊕(4i+1)
(m−i)τ

are surjective for each 0 ≤ i ≤ m− 1.

By the proof of Lemma 4.2.1, we see that O⊕(4i+1)
(m−i)τ is generated by the monomials

{x1y
m−ih2i−1(x2, x3), ym−ih2i(x2, x3)},

where hj(x2, x3) denotes any monomial of degree j in the variables x2, x3. We have

x1y
m−ih2i−1(x2, x3) = gi2m,P

(
x1h2i−1(x2, x3)⊗ ȳm−i

)
,

ym−ih2i(x2, x3) = gi2m,P
(
h2i(x2, x3)⊗ ȳm−i

)
,

so gi2m,P is surjective. Furthermore, this local description shows that the kernel of gi2m,P

is given by

ker(gi2m,P ) = Sym2i(E1)⊗Mm−i ⊗OS,P (−τ).

Putting this together, we see that g2m,P is surjective and has kernel

OS,P (−τ)⊗MP ⊗ S̃ym
2m−2

(E1,P ⊕MP ).
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This proves that g2m is surjective and has kernel OS(−τ)⊗M⊗ S̃ym
2m−2

(E1⊕M), so

by the snake lemma we see that f2m is also surjective with the same kernel. This proves

the lemma in the case where n is even.

The case where n = 2m+ 1 (m ≥ 1) is odd is proved in a very similar way. We use

the decomposition

S̃ym
2m+1

(E1 ⊕M) ∼=
m⊕
i=0

Sym2i+1(E1)⊗Mm−i

and the morphisms σ2i+1 : Sym2i+1(E1) → A2i+1 and f̄2m−2i : Mm−i → A2m−2i to

define f2m+1 and g2m+1 as before. Surjectivity of these maps and the expressions for

their kernels are then proved exactly as above.

This completes the proof of Lemma 5.1.3.

From this lemma we obtain an embedding of Z into the weighted projective bundle

P̃ := P̃S(E1⊕M), where E1⊕M is considered as a weighted locally free sheaf with weights

(1, 2) on S (for definitions see Section 1.2). Let πP̃ : P̃→ S denote the natural projection.

Then we see that Z is a divisor in the linear system |OP̃(2)⊗ π∗P̃(OS(τ)⊗M−1)| on P̃.

So the adjunction formula gives

ωZ ∼= ωP̃|Z ⊗ π
∗
A
(
OS(τ)⊗M−1

)
⊗OZ(2). (5.3)

All that remains is to find an expression for ωP̃. In order to do this we use the

following exact sequence, obtained as a relative version of [Dol82, 2.1.5]

0 −→ Ω1
P̃/S −→ π∗P̃

(
E1(−1)⊕M(−2)

)
−→ OP̃ −→ 0.

Taking the top wedge power of the sheaves in this sequence gives an expression

ωP̃/S
∼= π∗P̃

(
det(E1)⊗M

)
⊗OP̃(−5).
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Finally, noting that ωP̃/S
∼= ωP̃⊗π

∗
P̃ω
−1
S , back-substitution into equations (5.3) and (5.1)

gives the result.

In light of this theorem, we define an invertible sheaf on S

K := ωS ⊗ det(E1)⊗OS(τ)⊗ (E+
3 )−1,

so that ωX ∼= π∗K. The sheaf K will turn out to be important in many of the calculations

that follow in the remainder of this chapter.

We conclude this section with the following result that calculates the Kodaira di-

mension of X. As the Kodaira dimension is a birational invariant, this will coincide

with the Kodaira dimensions of Xt and Y .

Corollary 5.1.5. The Kodaira dimension κ(X) is given by

κ(X) =


1 if deg(K) > 0,

0 if Kn ∼= OS for some n > 0,

−∞ otherwise.

Proof. By definition, the Kodaira dimension is given as the smallest integer κ(X) such

that

h0(X,ωnX) ≤ (const.)nκ(X)

for all n ≥ 1, where we adopt the convention that if h0(X,ωnX) = 0 for all n ≥ 1 then

κ(X) := −∞.

Now Theorem 5.1.1 gives us that ωX ∼= π∗K, so by the projection formula and the

Leray spectral sequence

h0(X,ωnX) ∼= h0(S,Kn).

The result then follows immediately from [Har77, Remark IV.1.3.2].
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5.2 The Coherent Euler Characteristic

The aim of this section is to calculate the coherent Euler characteristics χ(OX), χ(OXt)

and χ(OY ) for the threefolds X, Xt and Y defined in the last section. We have:

Theorem 5.2.1. The coherent Euler characteristics χ(OX), χ(OXt) and χ(OY ) are all

equal and given by −deg(K), where K is the invertible sheaf on S defined in the last

section.

Proof. We perform the calculation for X, the calculations for Xt and Y are identical.

So let X be as usual and let L := OX(1) ⊗ ω−1
X be the polarisation sheaf on X.

Note that, by the proof of Theorem 4.3.2, the sheaf L is invertible. In order to calculate

χ(OX), we use the Riemann-Roch theorem for singular threefolds [Rei87, Theorem 10.2].

This states that, for D a Weil divisor on X, there is an expression

χ
(
X,OX(D)

)
= χ(OX) +

1

12
D.(D −KX).(2D −KX) +

1

12
D.c2(X) +

∑
Q

cQ(D),

where c2(X) denotes the second Chern class of X and the summation takes place over

the singularities Q of the sheaf OX(D), where cQ(D) denotes a contribution due to the

singularity at Q.

We will apply this theorem to the sheaves OX(D) := ωnX ⊗ Ln for n ∈ {1, 2, 3}.

Note first that, as ωX and L are both invertible sheaves on X, these sheaves will be

nonsingular and there will be no contributions cQ(D). Next, by Theorem 5.1.1, ωX

is the inverse image of the sheaf K on S, so the intersection numbers ωX .ωX .ωX = 0

and ωX .ωX .L = 0. Furthermore, as the restriction of L to a fibre has self-intersection

number 2, we must have ωX .L.L = 2 deg(K).

Substituting in to the equation above, we obtain

χ(X,ωX ⊗ L) = χ(OX) +
1

2
deg(K) +

1

6
L.L.L+

1

12
(ωX ⊗ L).c2(X)
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χ(X,ω2
X ⊗ L2) = χ(OX) + 6 deg(K) +

4

3
L.L.L+

1

6
(ωX ⊗ L).c2(X)

χ(X,ω3
X ⊗ L3) = χ(OX) +

45

2
deg(K) +

9

2
L.L.L+

1

4
(ωX ⊗ L).c2(X).

In order to prove the theorem we will derive expressions for χ(X,ωnX ⊗ Ln) for each

n ∈ {1, 2, 3}, then solve the above equations simultaneously to find χ(OX).

Observe first that as L is π-ample on X and ωX is the inverse image of a sheaf under

π, by [KMM87, Theorem 1.2.5] we have that the higher direct images Riπ∗(ω
n
X⊗Ln) = 0

for all i > 0 and all n > 0 (we note here that different vanishing results must be used

here when calculating χ(OXt) and χ(OY ): for Xt use the extension of the above result

to π-nef and π-big divisors [KMM87, Remark 1.2.6] and for Y use the analytic relative

vanishing theorem of Ancona [Anc87, Theorem 2.1]).

Using this, by the Leray spectral sequence we see that

χ
(
X,ωnX ⊗ Ln

)
= χ

(
S, π∗(ω

n
X ⊗ Ln)

)
= χ

(
S, π∗OX(1)n

)
= χ(S, En)

for all n > 0.

Now, by definition, χ(S, E1) = deg(E1) + 3χ(OS). Furthermore, the exact sequence

0 −→ Sym2(E1) −→ E2 −→ Oτ −→ 0

gives deg(E2) = deg(τ) + deg(Sym2(E1)). Then, using the exact sequence

0 −→
∧

2 E1 −→ E1 ⊗ E1 −→ Sym2(E1) −→ 0
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and the isomorphism
∧2 E1

∼= det(E1)⊗ E∨1 , we obtain

deg
(
Sym2(E1)

)
= deg(E1 ⊗ E1)− deg

(∧
2 E1

)
= 6 deg(E1)− deg

(
det(E1)⊗ E∨1

)
= 4 deg(E1).

So deg(E2) = 4 deg(E1) + deg(τ), giving

χ(X, E2) = 4 deg(E1) + deg(τ) + 6χ(Os).

It just remains to find deg(E3). Lemma 4.2.1 gives an exact sequence

0 −→ Sym3(E1) −→ E3 −→ E+
3 ⊕O

⊕3
τ −→ 0

which in turn gives

deg(E3) = deg
(
Sym3(E1)

)
+ deg(E+

3 ) + 3 deg(τ).

To find deg(Sym3(E1)) we use the exact sequence

0 −→ det(E1) −→
(
E1 ⊗ (E1 ∧ E1)

)⊕2 −→ E⊗3
1 −→ Sym3(E1) −→ 0,

which gives

deg
(
Sym3(E1)

)
= deg(E⊗3

1 ) + deg
(

det(E1)
)
− deg

(
(E1 ⊗ (E1 ∧ E1))⊕2

)
= 27 deg(E1) + deg(E1)− 6 deg(E1 ∧ E1)− 6 deg(E1)

= 10 deg(E1).
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Thus

deg(E3) = 10 deg(E1) + deg(E+
3 ) + 3 deg(τ),

so

χ(X, E3) = 10 deg(E1) + deg(E+
3 ) + 3 deg(τ) + 11χ(OS).

Substituting these expressions into the Riemann-Roch formulae above and solving

simultaneously we obtain

(ωX ⊗ L).c2(X) = 4 deg(E+
3 ) + 26 deg(E1) + 16 deg(τ)

L.L.L = 6 deg(E+
3 )− 4 deg(E1)− 5 deg(τ)− 6 deg(ωS)

χ(OX) = deg(E+
3 )− deg(E1)− deg(τ)− deg(ωS) = −deg(K).

This completes the proof of Theorem 5.2.1.

5.3 Constructing Calabi-Yau Threefolds

In most of the rest of this chapter we will be concerned with the case when the analytic

threefold Y (defined in Section 5.1) is a Calabi-Yau threefold. Calabi-Yau manifolds

are a higher dimensional generalisation of K3 surfaces that are of particular interest to

researchers and K3-fibrations can provide a good way to construct them. In particular,

we note that K3-fibred Calabi-Yau manifolds have been studied in relation to some

versions of string theory (for instance, see [KLM95]). For this reason it would be good

to know whether our construction can produce them and what properties any that are

constructed can have.

Definition 5.3.1. A Calabi-Yau threefold is a nonsingular three dimensional compact

Kähler manifold Y , with vanishing canonical bundle ωY ∼= OY and trivial cohomology

groups H1(Y,OY ) = H2(Y,OY ) = 0.
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With this in place, we can give conditions under which our construction produces a

Calabi-Yau threefold:

Theorem 5.3.2. Y is a Calabi-Yau threefold if and only if it is Kähler and

• the base curve S ∼= P1,

• the invertible sheaf K ∼= OS.

Proof. First suppose that Y is a Calabi-Yau threefold. Then ωY ∼= OY ∼= π∗YK by

Theorem 5.1.1, so the projection formula gives K ∼= OS . Furthermore, the Leray spectral

sequence gives an injective homomorphism H1(S,OS)→ H1(Y,OY ), which implies that

h1(Y,OY ) ≥ g(S). Thus g(S) = 0 and S ∼= P1.

Next suppose that we have constructed πY : Y → S ∼= P1 satisfying the conditions of

the theorem. Then Theorem 5.1.1 gives ωY ∼= π∗YK ∼= OY . Furthermore, Serre duality

gives H1(Y,OY ) ∼= H2(Y,OY ). So in order to prove the theorem it suffices to prove

that H1(Y,OY ) = 0.

The Leray spectral sequence gives rise to an exact sequence

0 −→ H1(S,OS) −→ H1(Y,OY ) −→ H0(S,R1πY ∗OY ) −→ H2(S,OS) −→ · · · .

Using the fact that S ∼= P1, we obtain an isomorphism

H1(Y,OY ) ∼= H0(S,R1πY ∗OY ).

Thus, it suffices to show that R1πY ∗OY = 0.

In order to prove this, we will show that H1(Y0,OY0) = 0 for any fibre Y0 of πY . The

vanishing of R1πY ∗OY will then follow from a corollary of the theorem on cohomology

and base change [BS76, Corollary 3.5].

Lemma 5.3.3. H1(Y0,OY0) = 0 for any fibre Y0 of πY : Y → S.
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Proof. Let Y0 be any fibre of πY : Y → S. Then as πY : Y → S is a semistable analytic

threefold fibred by K3 surfaces, Y0 is one of the fibres from the classification of Theorem

2.3.5. We will analyse each of the cases in this classification in turn.

If Y0 is a fibre of Type I then it is a smooth K3 surface, so H1(Y0,OY0) = 0 by

definition. Next suppose that Y0 is a fibre of Type II. Recall then that Y0 is a chain of

surfaces V0∪ · · ·∪Vr, for rational surfaces V0, Vr and elliptic ruled surfaces V1, . . . , Vr−1,

with Vi−1 ∩ Vi = Di smooth elliptic. Furthermore, by Theorem 3.4.1 we may assume

that V1, . . . , Vr−1 are minimal.

Using an argument based upon that used to prove [SB83b, Lemma 2.12], we consider

the exact sequence

0 −→ OV0(−D1) −→ OY0 −→ OY0−V0 −→ 0.

By Lemma 3.3.6 we have KV0 ∼ −D1 on V0, so by Serre duality and the properties

of rational surfaces we have H1(V0,OV0(−D1)) = 0. Thus, the long exact sequence of

cohomology associated to the above short exact sequence gives an injection

H1(Y0,OY0) �
�

// H1(Y0 − V0,OY0−V0).

Now we proceed by induction on the components of Y0. For 0 ≤ k < r, write

Σk := V0 ∪ · · · ∪ Vk. Then there is a short exact sequence

0 −→ OVk(−Dk+1) −→ OY0−Σk−1
−→ OY0−Σk

−→ 0

for all 0 < k < r. We wish to prove that the long exact sequence of cohomology

associated to this short exact sequence gives rise to an injection

H1(Y0 − Σk−1,OY0−Σk−1
) �
�

// H1(Y0 − Σk,OY0−Σk
)

183



Chapter 5. Properties of the Constructed Threefolds

To show this, it suffices to prove that H1(Vk,OVk(−Dk+1)) = 0.

So suppose first that (Dk+1|Vk)2 > 0. Then Dk+1|Vk is nef and big, so by the general

Kodaira vanishing theorem [KM98, Theorem 2.70] we have H1(Vk,OVk(−Dk+1)) = 0.

Furthermore, if (Dk+1|Vk)2 < 0 then, by Lemma 3.3.10, we must have (Dk|Vk)2 > 0

and KVk ∼ −Dk|Vk − Dk+1|Vk , so by Serre duality and the general Kodaira vanishing

theorem,

H1(Vk,OVk(−Dk+1)) = H1(Vk,OVk(−Dk)) = 0.

Finally, in the case where (Dk+1|Vk)2 = 0, let F denote any fibre of the ruling and

consider the short exact sequence

0 −→ OVk(−Dk+1 − F ) −→ OVk(−Dk+1) −→ OF (−Dk+1) −→ 0.

By the explicit description of Pic(Vi) in Lemma 3.3.9, the divisor (Dk+1 +F ) is nef and

big, so by the general Kodaira vanishing theorem we have H1(Vk,OVk(−Dk+1−F )) = 0.

Moreover F ∼= P1 and OF (−Dk+1) ∼= OP1(−1), so H1(F,OF (−Dk+1)) = 0. So, by the

long exact sequence of cohomology associated to this short exact sequence, we see that

H1(Vk,OVk(−Dk+1)) = 0, as required.

Thus we have injections H1(Y0 − Σk−1,OY0−Σk−1
) ↪→ H1(Y0 − Σk,OY0−Σk

) for all

0 < k < r. These compose to give an injection

H1(Y0,OY0) �
�

// H1(Vr,OVr).

But Vr is rational, so H1(Vr,OVr) = 0. Therefore, H1(Y0,OY0) = 0 as well.

Finally, we consider the case when Y0 is a fibre of Type III. The proof that the first

cohomology H1(Y0,OY0) vanishes in this case will be quite similar to that used in the

Type II case. Recall that Y0 consists of rational surfaces meeting along rational curves

that form cycles in each component, such that the dual graph Γ of Y0 is a triangulation
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of the sphere S2.

Begin by ordering the vertices V0, . . . , Vr of Γ such that the subgraphs spanned by

the sets of vertices {V0, . . . , Vk} and {Vk+1, . . . , Vr} are connected for all 0 ≤ k < r. Let

Σk denote the set of components of Y0 corresponding to the set of vertices {V0, . . . , Vk};

these components will also be labelled V0, . . . Vk. Then Σk −Σk−1 = Vk and, since S2 is

simply connected, Vk ∩ Σk−1 is a connected subset of the cycle of double curves on Vk.

By the same argument as before, we see that we have an injective homomorphism

H1(Y0,OY0) �
�

// H1(Y0 − Σ0,OY0−Σ0).

We would like to show that, for all 1 < k < r, there are injective homomorphisms

H1(Y0 − Σk−1,OY0−Σk−1
) �
�

// H1(Y0 − Σk,OY0−Σk
).

Composing these gives an injective homomorphism H1(Y0,OY0) ↪→ H1(Vr,OVr), from

which H1(Y0,OY0) = 0 will follow immediately from the fact that Vr is rational.

To show that we have the injective homomorphisms above, we once again consider

the short exact sequence

0 −→ OVk(−Dk) −→ OY0−Σk−1
−→ OY0−Σk

−→ 0,

where Dk = Vk ∩ (Y0−Σk) is a connected chain (or cycle) of rational curves on Vk. We

wish to show that H1(Vk,OVk(−Dk)) = 0.

Note that if Dk contains all double curves on Vk then by Lemma 3.3.6 we must have

Dk ∼ −KVi , so by Serre duality

H1(Vk,OVk(−Dk)) = H1(Vk,OVk) = 0.
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Thus we may assume that Dk does not contain all double curves on Vk, so is a connected

chain of rational curves.

Now consider the short exact sequence

0 −→ OVk(−Dk) −→ OVk −→ ODk
−→ 0.

As Vk is rational, the cohomology groups H1(Vk,OVk) and H2(Vk,OVk) both vanish.

Furthermore, as Dk is a connected chain of rational curves, we have h0(Dk,ODk
) = 1

and H1(Dk,ODk
) = 0. So the long exact sequence of cohomology associated to the

above short exact sequence gives H2(Vk,OVk(−Dk)) = 0. Now, by Serre duality we

have

H0(Vk,OVk(KVk +Dk)) = H2(Vk,OVk(−Dk)) = 0.

But, by Lemma 3.3.6, KVk + Dk is linearly equivalent to −D′k, where D′k denotes the

sum of the double curves not in Dk (which is also a connected chain of rational curves).

So, by symmetry of this argument in Dk and D′k, we see that H0(Vk,OVk(−Dk)) = 0.

Putting all of this into the long exact sequence of cohomology associated to the short

exact sequence above we obtain an exact sequence

0 −→ H0(Vk,OVk) −→ H0(Dk,ODk
) −→ H1(Vk,OVk(−Dk)) −→ 0.

But H0(Vk,OVk) and H0(Dk,ODk
) both have dimension 1, as Vk and Dk are connected,

so we must have H1(Vk,OVk(−Dk)) = 0.

Thus we have the required injective homomorphisms, which compose to give an

injective homomorphism H1(Y0,OY0) → H1(Vr,OVr). Therefore, as Vr as rational, we

immediately obtain that H1(Y,OY ) = 0, as required. This completes the proof of

Lemma 5.3.3.

Using this lemma, [BS76, Corollary 3.5] shows that R1πY ∗OY = 0, so by the Leray
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spectral sequence we obtain H1(Y,OY ) = 0. This completes the proof of Theorem

5.3.2.

Two interesting numbers associated to a Calabi-Yau threefold Y are the ranks of

the second and third integral cohomology groups h2(Y,Z) and h3(Y,Z). From these two

values all of the Hodge numbers can be calculated; these are of particular interest to

researchers studying mirror symmetry and the moduli of Calabi-Yau threefolds.

One could hope to calculate these numbers by relating them to some properties of

the relative log canonical model X, which can in turn be calculated using the explicit

description of X given in Chapter 4; indeed, this is what we will do for h2(Y,Z) in the

last two sections of this chapter.

Unfortunately, the rank of the third cohomology group is much more difficult to

calculate. Caibăr proves a result [Cai99, Theorem 4.22] that performs this calculation

locally above an isolated singularity of X, but this result is quite tricky to use in

practice (and the singularities of X may not all be isolated!). He conjectures a stronger

result [Cai99, Conjecture 4.23] which, if found to be true, could be useful in calculating

h3(Y,Z); however, to our knowledge this conjecture has yet to be proved.

5.4 The Number of Crepant Divisors

In order to perform the calculation of h2(Y,Z) alluded to at the end of the last section,

we make use of the close relationship between the cohomology group H2(Y,Z) and the

Picard group Pic(Y ) ∼= H1(Y,O∗Y ), given by the exponential exact sequence:

0 −→ Z −→ OY −→ O∗Y −→ 0.

This sequence gives rise to the long exact sequence of cohomology

· · · −→ H1(Y,OY ) −→ Pic(Y ) −→ H2(Y,Z) −→ H2(Y,OY ) −→ · · · .
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If Y is a Calabi-Yau threefold, by definition the groups H1(Y,OY ) and H2(Y,OY ) both

vanish, so H2(Y,Z) ∼= Pic(Y ). Thus, we can use the structure of the Picard group

Pic(Y ) to calculate h2(Y,Z).

In order to gain access the structure of Pic(Y ), we would like to compare it to the

divisor class group of the relative log canonical model X, which we should be able to

calculate using the explicit description of X in Chapter 4. To make this comparison we

will need to know how many divisors are contracted by the morphism φY : Y → X.

Recall that we can factor this morphism through the terminal threefold fibred by

K3 surfaces of degree two Xt. We have φY = φ ◦ f , where

Y
f−→ Xt φ−→ X.

As f is a small analytic resolution of the singularities of Xt, the number of divisors

contracted by φY will be the same as the number of divisors contracted by φ.

Now for any partial resolution ϕ : Z → X, where Z has at most terminal singulari-

ties, recall that we may write

KZ ≡ ϕ∗KX +
∑
i

aiEi,

where the sum runs over all exceptional divisors Ei ⊂ Z. As X has canonical singu-

larities, the discrepancies ai ≥ 0. If ai = 0 for some i, the corresponding exceptional

divisor Ei is called crepant. The number of crepant divisors

c(X) := #{i : ai = 0}

is finite [Rei80, Lemma 2.3] and is independent of the choice of Z.

As Xt has terminal singularities, we may choose Z = Xt in this definition. Further-

more, as φ : Xt → X is a crepant morphism, all of the φ-exceptional divisors in Xt are
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crepant divisors. So the number of divisors contracted by φ is exactly c(X).

It turns out that c(X) is not just useful for comparing divisor groups; it is also an

important invariant of X, measuring how far X is from being terminal. Unfortunately,

it seems that any closed expression for c(X) in terms of the data used to construct X

and the classification of singular fibres within it (given by Theorem 3.2.2) is likely to

be too complex to be practically computed. Instead, in this section we will give an

algorithmic method by which c(X) may be explicitly calculated for a given X.

We begin with a brief discussion of the singularities that can occur in X. By con-

struction, these are all Gorenstein and canonical. Let x ∈ X be any such singular point.

Then, by [Rei80, Corollary 2.10], a general hyperplane section x ∈ H ⊂ X has either

a rational double point, simple elliptic or cusp singularity (see Definition 3.1.7). Recall

from Definition 4.3.6 that if x ∈ H is a rational double point, x ∈ X is called compound

Du Val. By [KM98, Corollary 5.40], all but finitely many of the singularities occurring

in X are compound Du Val.

We are now ready to begin calculating the contribution to c(X) from a singularity

x ∈ X. Suppose first that x ∈ X is not isolated. Then x lies on an irreducible curve C of

singularities in X, the general point of which is compound Du Val. As a general fibre of

π : X → S is smooth, C must further lie within a fibre of π. Therefore, C must coincide

with a component of a double curve in a fibre of Type II or III (in the classification of

Theorem 3.2.2). As the analytic resolution φY : Y → X contracts a chain of rC rational

or elliptic ruled components to C, this curve will have singularities of cArC type (i.e.

the general hyperplane section has an ArC singularity). So C gives rise to a chain of rC

crepant divisors in the partial resolution φ : Xt → X, and thus contributes rC to c(X).

After resolving the singularities along such curves, we are left with a threefold X ′

having only isolated singularities. Let x ∈ X ′ be any such singularity and consider the

case where x ∈ X ′ is not compound Du Val. This situation can only occur away from

the double curve in a degenerate fibre of Type (II.0), (II.1b), (II.4b) or (III.0), or on the
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double curve in a fibre of Type III (in the classification of Theorem 3.2.2). Furthermore,

by the local description of these singularities in Section 3.1, all can be written locally

as hypersurfaces in C4. So we may calculate their contributions to c(X) by the toric

methods of Caibăr [Cai99, Section 3].

After all such singularities have been resolved, any remaining singularities must be

isolated and compound Du Val. But then, by [KM98, Corollary 5.38], the resulting

threefold is terminal, so does not require any further resolution.

Thus, in summary, we have the following algorithm for calculating c(X):

(1) If X has any non-isolated singularities then they must lie along irreducible curves

Ci of singularities of cAri type, lying along double curves in degenerate fibres of

Type II or III. Each such curve contributes ri to c(X).

(2) Once all non-isolated singularities have been resolved, use the toric methods of

Caibăr [Cai99, Section 3] to calculate the contributions to c(X) made by each of

the non-compound Du Val points.

5.5 The Second Betti Number of a Calabi-Yau Threefold

In this section we will complete the calculation of the rank of the second integral coho-

mology group h2(Y,Z) when Y is a Calabi-Yau threefold.

So let X and Y be defined as in Section 5.1, and assume that Y satisfies the con-

ditions in Theorem 5.3.2. Then Y is a Calabi-Yau threefold fibred by K3 surfaces of

degree two and X is the relative log canonical model of Y . As usual, φY will denote

the birational morphism from Y to X.

We are interested in calculating the rank of the second integral cohomology group

h2(Y,Z). In order to do this we will use the fact that H2(Y,Z) ∼= Pic(Y ), and calculate

the rank of this group by comparing it to the (Weil) divisor class group Cl(X). We

have:
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Proposition 5.5.1. With X and Y as above, we have

h2(Y,Z) = ρ(X) + c(X)

where ρ(X) denotes the rank of Cl(X) and c(X) denotes the number of crepant divisors

calculated in Section 5.4.

Proof. By [Cai99, Proposition 4.11], there is a diagram with exact rows

0 // K //WDiv(Y )
φY ∗ //

��

WDiv(X) //

��

0

0 // K // Cl(Y )
φY ∗ // Cl(X) // 0

where WDiv(Y ) denotes the group of Weil divisors on Y and K is the subgroup of

WDiv(Y ) with support contained in Ex(φY ). Furthermore, K is finitely generated and

free.

By this description we must have K ∼=
⊕

i Z[Ei], where the sum runs over the

set of exceptional divisors Ei of φY . As there are precisely c(X) such divisors, we

see that rank(Cl(Y )) = c(X) + ρ(X). But, as Y is a smooth Calabi-Yau threefold,

Cl(Y ) ∼= Pic(Y ) ∼= H2(Y,Z).

Finally, it just remains to calculate ρ(X). This will follow from the explicit descrip-

tion of X in Chapter 4. We have:

Theorem 5.5.2. Let X be defined as above. Then

ρ(X) = r(X) + 2,

where r(X) denotes the number of reducible fibres (i.e. fibres of Types (II.3), (II.4),

(III.3) and (III.4) in the classification of Theorem 3.2.2) appearing in π : X → S.
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Proof. Let D be any Weil divisor on X and let F be a general fibre of π : X → S. Then

X is nonsingular in a neighbourhood of F , so the restricted sheaf OF (D) is invertible

on F . As F can be seen as a sextic hypersurface in P(1, 1, 1, 3), its Picard group Pic(F )

has rank 1 and is generated by the invertible sheaf OF (1). So OF (D) ∼= OF (n), for

some integer n.

Next, as OP1(1) is ample, we may find an integer m > 0 such that the sheaf

π∗(OX(D)⊗OX(−n))⊗OS(m) is generated by its global sections. Furthermore, by the

projection formula and the Leray spectral sequence, we have an isomorphism

H0
(
X,OX(D)⊗OX(−n)⊗ π∗OS(m)

) ∼= H0
(
S, π∗

(
OX(D)⊗OX(−n)

)
⊗OS(m)

)
.

In particular, the space of sections H0(X,OX(D)⊗OX(−n)⊗ π∗OS(m)) is nonempty.

Let D′ be an effective divisor defined by a section in this space.

Now, by construction,

OX(D′) ∼= OX(D)⊗OX(−n)⊗ π∗OS(m),

and, by the choice of n, we see that the restriction to a general fibre OF (D′) ∼= OF . So

D′|F = 0, as D′ is effective. Thus D′ must be supported on fibres of π : X → S.

Therefore, we have shown that any Weil divisor D may be expressed as D ∼ nH+D′,

where H is a Cartier divisor corresponding to OX(1) and D′ is supported on fibres of

π : X → S. We further note that the nH, for n ∈ Z, are all distinct in Cl(X) and, if

n 6= 0, also distinct from D. This is easily seen, as the restrictions of the corresponding

sheaves to a general fibre do not agree.

It remains to classify the divisors supported on fibres of π : X → S. Note first that,

as S ∼= P1, any two fibres of π : X → S are linearly equivalent. Furthermore, all fibres

are irreducible except those of Types (II.3), (II.4), (III.3) and (III.4) in the classification

of Theorem 3.2.2, which each have two components. Let Fi (1 ≤ i ≤ r(X)) denote the
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reducible fibres of π and denote the two components of Fi by Vi and V ′i . Note that

V ′i ∼ Fi − Vi, so any divisor supported on fibres of π can be written, up to linear

equivalence, as a sum of integer multiples of F (a general fibre) and the Vi. All that

remains is to show that F and the Vi are linearly independent in Cl(X).

So suppose that aF+
∑r(X)

i=1 aiVi ∼ 0 in Cl(X), for some integers a and ai. Restricting

to V ′i we obtain aiDi ∼ 0 in V ′i , where Di = Vi ∩V ′i . But this implies that ai = 0 for all

i. Thus we are left with aF ∼ 0. But OX(aF ) ∼= π∗OS(a), which is non-trivial if a 6= 0.

So a = 0 and therefore F and the Vi are linearly independent in Cl(X).

Thus Cl(X) has rank r(X) + 2 and is generated over Z by the classes of H, F and

the Vi. This completes the proof of Theorem 5.5.2.

With this in place, we have:

Corollary 5.5.3. The rank of the second integral cohomology group of Y is given by

h2(Y,Z) = r(X) + c(X) + 2

where r(X) denotes the number of reducible fibres appearing in π : X → S and c(X)

denotes the number of crepant divisors calculated in Section 5.4.

Proof. Follows immediately from Theorem 5.5.2 and Proposition 5.5.1.
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[BS76] C. Bănică and O. Stănăşilă, Algebraic methods in the global theory of

complex spaces, Editura Academiei, Bucharest, 1976.
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