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This talk is based upon my current work on the explicit construction of
models for threefolds fibred by K3 surfaces of degree two. Its contents may
be found in more detail in the preprint [Tho11a] and in my doctoral thesis
[Tho11b], a copy of which is currently available on my website:

http://people.maths.ox.ac.uk/∼thompsona

We begin by defining our objects of study:

Definition 1 A K3 surface of degree two is a nonsingular projective surface
X satisfying ωX ∼= OX and H1(X,OX) = 0, along with an ample invertible
sheaf L on X that has self-intersection number L.L = 2.

A Riemann-Roch calculation shows that the invertible sheaf L defines
an embedding of X as a sextic hypersurface in weighted projective space
X ∼= X6 ⊂ P(1, 1, 1, 3). Equivalently, we may see X as a double cover
X → P2 ramified over a smooth sextic curve.

We are interested in studying threefolds that admit fibrations by such
surfaces. Formally we define:

Definition 2 Let S be a nonsingular complex curve. A threefold fibred by
K3 surfaces of degree two over S is a triple (X, π,L) satisfying:

• X is a nonsingular 3-dimensional complex variety;

• π : X → S is a projective, flat, surjective morphism with connected
fibres, whose general fibres are K3 surfaces;

• L is an invertible sheaf on X which induces an ample invertible sheaf
Ls on a general fibre Xs, that has self-intersection number Ls.Ls = 2.
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In order to study such threefolds, we would like to find explicit birational
models for them. As K3 surfaces may be seen as a 2-dimensional analogue
of elliptic curves, it makes sense to start by drawing inspiration from the
well-developed theory of elliptic fibrations. In particular, we will attempt to
emulate Nakayama’s [Nak88] construction of the Weierstrass model for an
elliptic fibration with a section.

In order to do this we use the fact that a K3 surface of degree two may be
embedded as a sextic hypersurface in P(1, 1, 1, 3), and attempt to construct
a model for our threefold fibred by K3 surfaces of degree two (X, π,L) inside
a bundle of weighted projective spaces P(1, 1, 1, 3) on the base curve S.

To construct this bundle, we start with a rank 3 vector bundle E1 and a
line bundle E+3 on S, then take the relative Proj of the weighted symmetric
algebra that has E1 in degree 1 and E+3 in degree 3. But how do we define E1
and E+3 ?
E1 is easily defined, we simply set E1 := π∗L. We would like to set E+3

to be the cokernel of the map σ3 : Sym3(E1) → π∗L⊗3, but unfortunately
this cokernel is not necessarily locally free. Instead, we define E+3 to be the
reflexivisation

E+3 :=
(
coker(σ3 : Sym3(E1) −→ π∗L⊗3)

)∨∨
.

Finally, we take a sextic hypersurface in this bundle to get a model W for X,
called the K3-Weierstrass model. The model W admits a natural projection
p : W → S and may be seen as a double cover of the P2-bundle PS(E1).

Theorem 3 [Tho11b, Theorem 1.3.3]. There is a birational map µ : X− →
W over S that is an isomorphism on the general fibre.

Note that this theorem tells us nothing about the special fibres. To see
what happens to them, we need to understand what such fibres can look like.

Example 4 We can obtain one type of special fibre by relaxing the definition
of a K3 surface of degree two. Let X be a K3 surface and let L be a line
bundle on X that is nef and big (but not ample) with self-intersection number
L.L = 2. Then L is not necessarily generated by its global sections. If this
is the case, a Riemann-Roch calculation shows that X admits a birational
morphism to a complete intersection X → X2,6 ⊂ P(1, 1, 1, 2, 3), where the
degree two relation does no involve the degree two variable. In this case, we
see that X2,6 cannot be seen as a double cover of P2. Instead, it is a double
cover of a quadric cone X2 ⊂ P(1, 1, 1, 2), ramified over a smooth sextic and
the vertex (0 : 0 : 0 : 1). Such a K3 surface is called unigonal.
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Returning to the K3-Weierstrass model W , we see that the fibres of
p : W → S all admit morphisms to P2. So something must happen to the
unigonal fibres. In reality, they are destroyed and completely replaced by the
birational map µ : X− → W , a process that can make W highly singular.
This is a big problem with the model W , and means that it is not of much
use for studying the properties of X.

In fact, it can be shown that, under certain assumptions, the unigonal
fibres form the only obstruction to the construction of a good model for X.
We have:

Theorem 5 [Tho10, Theorem 4.1]. Let π : X → ∆ := {z ∈ C : 0 ≤ |z| < 1}
be a semistable (i.e. the central fibre is reduced and has normal crossings)
degeneration of K3 surfaces with ωX ∼= OX and let H be a divisor on X
that is effective, nef and flat over ∆, that induces an ample divisor Hs with
Hs.Hs = 2 on a general fibre. Then H defines a morphism that maps the
central fibre to either:

• A sextic hypersurface X6 ⊂ P(1, 1, 1, 3) (i.e. a double cover of P2 ram-
ified over a sextic curve); or

• A complete intersection X2,6 ⊂ P(1, 1, 1, 2, 3), where the degree two
relation does not involve the degree two variable (i.e. a double cover
of a quadric cone, ramified over a sextic curve and the vertex of the
cone).

Note that these surfaces may be singular (even non-normal).

Following an idea of Catanese and Pignatelli [CP06], we use this to refine
our construction. Instead of a P2-bundle, we construct a bundle of rational
surfaces on S, which we allow to degenerate to quadric cones. Taking a
double cover of this bundle, we obtain a new model πc : Xc → S. As the
fibres in this model are no longer forced to admit a morphism to P2, this
model behaves much better on the unigonal fibres.

In order to construct this model, we need to alter some of the assumptions
on (X, π,L) that we made originally. This will allow us to use the explicit
description of the fibres obtained from Theorem 5. We assume:

• The polarisation L is locally flat, i.e. for all s ∈ S there exists an open
set Us 3 s and a section in Γ(π−1(Us),L) that defines an effective and
flat divisor over Us;

• X is allowed to have Gorenstein terminal singularities;
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• There exists an analytic resolution f : Y → X of X such that Y is
semistable and the exceptional locus of f has codimension 2 in Y .

Under these new assumptions, the model that we would like to explicitly
construct is the relative log canonical model of (X, π,L), defined as:

Xc := ProjS
(⊕
n≥0

π∗(ω
⊗n
X ⊗ L

⊗n)
)
.

This model has been widely studied in relation to the minimal model pro-
gram. In particular, it has the following desirable properties:

• There exists a birational map φ : X− → Xc over S;

• The exceptional set of φ−1 has codimension 2 in Xc (so φ cannot “de-
stroy and replace” any fibres);

• Xc has at worst canonical singularities (so the singularities of Xc are
controlled).

In order to construct this model explicitly, we study the sheaf of OS-
algebras

R :=
⊕
n≥0

π∗(ω
⊗n
X ⊗ L

⊗n),

called the relative log canonical algebra.
Let A be the graded subalgebra of R generated in degrees 1 and 2. Then

we have:

Lemma 6 The inclusion A ⊂ R yields a double cover

ψ : Xc := ProjSR −→ ProjSA.

Note that ProjSA is the fibration of S by rational surfaces that we men-
tioned earlier.

This lemma means that we can use the algebra A as a “stepping stone”
on the way to the construction of R. So we begin by constructing A. By
definition, the graded parts

A1
∼= π∗(ωX ⊗ L) := E1,

A2
∼= π∗(ω

⊗2
X ⊗ L

⊗2) := E2,

and we have an exact sequence induced by multiplication

(∗) 0 −→ Sym2(E1)
σ2−→ E2 −→ T2 −→ 0.

Furthermore, we have
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Lemma 7 [Tho11a, Lemma 5.1] T2 ∼= Oτ for some effective divisor τ on S
that is supported on the points of S corresponding to the unigonal fibres of
π : X → S.

and

Proposition 8 [Tho11a, Proposition 5.4] A can be completely reconstructed
from the data E1, τ and the extension of Oτ by Sym2(E1) given by the exact
sequence (∗).

Given this, we just need to find a way to reconstruct R from A. We begin
with:

Proposition 9 [Tho11a, Proposition 5.6] Let E+3 denote the reflexivisation

E+3 :=
(
coker(σ3 : Sym3(E1) −→ π∗(ω

⊗3
X ⊗ L

⊗3))
)∨∨

.

Then R ∼= A⊕ (A[−3]⊗ E+3 ) as a graded A-module.

This proposition givesR the structure of an A-module, but to fully recon-
struct it we need to equip it with a multiplicative structure (i.e. the structure
of an A-algebra). Such a multiplicative structure is completely determined
by a map β : (E+3 )2 → A6.

This information is enough to determine the branch locus of the double
cover ψ : ProjSR → ProjSA. To calculate this locus, begin by considering
a point P in the support of τ . Then the fibre of ProjSA over P is a quadric
cone X2 ⊂ P(1, 1, 1, 2), where the degree two relation does not involve the
degree two variable, and is singular at the point (0 : 0 : 0 : 1). Taking all such
singular points associated to all of the points in Supp(τ), we get a subset of
ProjSA that will be denoted by P . Then the branch locus of ψ consists of
the set of isolated points P together with the divisor BA in the linear system
|OProjSA(6)⊗ π∗A(E+3 )−2| determined by the map β.

Thus, we have a 5-tuple of data on S:

• E1 is a rank 3 vector bundle on S;

• τ is an effective divisor on S;

• ξ ∈ Ext1OS
(Oτ , Sym2(E1))/AutOS

(Oτ ) yields an extension of Oτ by
Sym2(E1), giving a vector bundle E2 and a map σ2 : Sym2(E1)→ E2;

• E+3 is a vector bundle on S;
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• β ∈ P(H0(S,A6 ⊗ (E+3 )−2)), where A6 is the degree six part of the
algebra A defined using E1, E2 and σ.

Finally, we have:

Theorem 10 [Tho11a, Theorem 6.2] Any threefold fibred by K3 surfaces of
degree two uniquely determines a 5-tuple as above, from which its relative log
canonical model can be explicitly reconstructed.

Furthermore, let R be an OS-algebra constructed from a 5-tuple as above,
and assume:

• If BA is the divisor of β on ProjS(A), then BA contains no points
from the set P,

• ProjS(R) has canonical singularities and has a semistable analytic res-
olution that modifies only finitely many fibres,

then there exists a threefold fibred by K3 surfaces of degree two that has
relative log canonical model given by ProjS(R).
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