Models for Threefolds Fibred by K3 Surfaces
of Degree Two

Alan Thompson

April 16th 2011, Young Researchers in Mathematics 2011,
University of Warwick

July 18th 2011, Géométrie Algébrique en Liberté XIX, Freie
Universitat Berlin

This talk is based upon my current work on the explicit construction of
models for threefolds fibred by K3 surfaces of degree two. Its contents may
be found in more detail in the preprint [Tholla] and in my doctoral thesis
[Thollbl, a copy of which is currently available on my website:

http://people.maths.ox.ac.uk /~thompsona

We begin by defining our objects of study:

Definition 1 A K3 surface of degree two is a nonsingular projective surface
X satisfying wx = Ox and H' (X, Ox) = 0, along with an ample invertible
sheaf L on X that has self-intersection number L.L = 2.

A Riemann-Roch calculation shows that such surfaces can be seen as
double covers of the projective plane P? ramified over smooth sextic curves.

We are interested in studying threefolds that admit fibrations by such
surfaces. Formally we define:

Definition 2 Let S be a nonsingular complex curve. A threefold fibred by
K3 surfaces of degree two over S is a triple (X, m, L) satisfying:

e X s a nonsingular 3-dimensional complex variety;

e m: X — S is a projective, flat, surjective morphism with connected
fibres, whose general fibres are K3 surfaces;

e L is an invertible sheaf on X which induces an ample invertible sheaf
Ly on a general fibre X, that has self-intersection number L,.L, = 2.


http://people.maths.ox.ac.uk/~thompsona

In order to study such threefolds, we would like to find explicit birational
models for them. Using the fact that a K3 surface of degree two can be seen
as a double cover of P? ramified over a sextic, we first attempt to construct
such models as double covers of P2-bundles. We obtain:

Theorem 3 [Thollb, Theorem 1.3.3]. Let (X, w, L) be a threefold fibred by
K3 surfaces of degree two. There exists a threefold W admitting a projective
fibration p: W — S that is birational to X over S and that can be described
explicitly as a double cover of a P*-bundle on S.

Unfortunately, this model turns out not to be very good. To see why, we
need to study the degenerations of K3 surfaces of degree two.

To see how a K3 surface of degree two may degenerate, we begin by
relaxing the assumptions that we made in the definition of these surfaces.
Specifically, we relax the condition that the invertible sheaf £ must be ample,
and instead assume that it is merely nef and big. In this case, we see that
a second type of surface can arise: one that admits a morphism to a double
cover of a quadric cone, ramified over a sextic curve and the vertex of the
cone. Such surfaces cannot be seen as double covers of P2, so any fibres in
m: X — S having this form are destroyed and replaced by the birational map
X——=W.

In fact, the presence of such “unigonal” fibres forms the only obstruction
to the usefulness of W. We have:

Theorem 4 [Thol(, Theorem 4.1]. Letm: X - A:={ze€ C:0<|z| <1}
be a semistable (i.e. the central fibre is reduced and has normal crossings)
degeneration of K3 surfaces with wx = Ox and let H be a divisor on X
that is effective, nef and flat over A, that induces an ample divisor H, with
H, H, = 2 on a general fibre. Then H defines a morphism that maps the
central fibre to either:

o A double cover of P? ramified over a sextic curve; or

o A double cover of a quadric cone, ramified over a sextic curve and the
vertex of the cone.

Note that these surfaces may be singular (even non-normal).

Following an idea of Catanese and Pignatelli [CP06], we use this to refine
our construction. Instead of a P?-bundle, we construct a bundle of rational
surfaces on S, which we allow to degenerate to quadric cones. Taking a
double cover of this bundle, we will obtain a new model 7¢: X¢ — 5. As



the fibres in this model are no longer forced to admit a morphism to P?, this
model takes much better account of the unigonal fibres.

In order to construct this model, we need to alter some of the assumptions
on (X, m, L) that we made originally. This will allow us to use the explicit
description of the fibres obtained from We assume:

e The polarisation L is locally flat, i.e. for all s € S there exists an open
set U, 3 s and a section in T'(7~1(Uy), £) that defines an effective and
flat divisor over Us;

e X is allowed to have mild (Gorenstein terminal) singularities;

e There exists an analytic resolution f: Y — X of X such that Y is
semistable and the exceptional locus of f has codimension 2 in Y.

Under these new assumptions, the model that we would like to explicitly
construct is the relative log canonical model of (X, m, L), defined as:

X¢:=Projs( P m. (" @ L5).

n>0

This model has been widely studied in relation to the minimal model pro-
gram. In particular, it has the following desirable properties:

e There exists a birational map ¢: X— — X over 5;

e The exceptional set of ¢! has codimension 2 in X¢ (so ¢ cannot “de-
stroy and replace” any fibres);

e X°¢ has only mild (canonical) singularities.

As mentioned before, this model can be explicitly constructed as a double
cover of a rational surface bundle on the base curve S. Furthermore, this
construction depends only upon a relatively small set of data on S:

Theorem 5 [Thollal Theorem 6.2] Any threefold fibred by K3 surfaces of
degree two uniquely determines a certain 5-tuple of data on S, from which
its relative log canonical model can be explicitly reconstructed.

Furthermore, (under certain conditions) any such 5-tuple of data defines
a threefold that arises as the relative log canonical model of some threefold
fibred by K3 surfaces of degree two.
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