
FIRST GW INVARIANTS

Thanks to Mark Gross, [7, Slide 16], we have a definition of mirror symmetry:

Suggested reading

• Probably the best preparation is to start reading [6].
• Read about Semi-flat SYZ mirror symmetry. References: [3, Section
6.2], the original paper [10] or various introduction by various people
(ask google).
• Understand how mirror symmetry works for elliptic curves, by e.g.
reading [1, Example 2.4]. Note how mirror symmetry exchanges the
symplectic and complex geometry.
• Watch the talk http://media.kias.re.kr/detailPage.do?pro_

seq=739&type=p on the KIAS media archive given by Helge Ruddat
with title Introduction to the Gross-Siebert program.
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The lecture series will be devoted to mirror symmetry, though not this exer-
cise session. Throughout mirror symmetry, Gromov-Witten invariants play
a crucial role. In fact, the initial way mirror symmetry caught the attention
of algebraic geometers was through its ability for enumerative predictions
in terms of Gromov-Witten invariants. While the general theory is rather
intricate, basic examples of Gromov-Witten invariants can be calculated ’by
hand’. The goal of this exercise session is for the reader to acquire familiarity
with the concepts surrounding curve counting theories.
Here, our target variety is the projective plane P2. Denote by Nd the number
of rational degree d curves passing through 3d−1 general points. Nd is your
first Gromov-Witten invariant. General here means that no 3 points lie on
a line, no 6 on a conic etc. First we justify (though not prove fully) in two
exercises why Nd is a finite number.

Exercise 1. For g > 1, consider the moduli space Mg of isomorphism
classes of smooth curves of genus g.1 In this exercise, we calculate the
dimension ofMg by probing covers over P1. This is [2, Exercise 23.2.1].

(1) Let C be a smooth genus g curve. Then C has a g-dimensional
family of line bundles of each degree d. Let L be such a line bun-
dle. For large d, H1(C,L) = 0 and Riemann-Roch tells us that
dim H0(C,L) = d − g + 1. Choosing two general sections s0, s1 ∈
H0(C,L) yields a cover C → P1 of degree d. Compute the dimension
of such covers in terms of dimMg.

(2) Next, Riemann-Hurwitz tells us that a general cover C → P1 has
2d + 2g − 2 branch points. Hence the dimension of such covers (up
to isomorphism) is 2d + 2g − 2, corresponding to the independent
motions of the branch points. Conclude that dimMg = 3g − 3.

There is a stacky sense in which dimMg = 3g− 3 also holds for g = 0, 1. In
particular, dimM0 = −3 can be understood as the group of automorphisms
of P1 being 3-dimensional. What is this group?
The goal of the next exercise is to justify that Nd is a finite number. We will
argue that the space of degree d rational curves in P2 is 3d− 1 dimensional.
Moreover, requiring that a curve meets a general point cuts down the di-
mension by 1. Hence requiring that a degree d curve meets 3d − 1 general
points yields a zero-dimensional moduli problem.

Exercise 2. (This is a subset of section 1
2 and section 11

2 , Deformation the-
ory of [11]. See also section 24.4 of [2].) We make some idealized assump-
tions. Assume that C ⊂ X is a smooth curve inside a smooth projective

1More precisely, Mg is a smooth orbifold when g > 2, a smooth Deligne-Mumford
stack when g = 2, and an Artin stack when g = 0, 1. The 0-dimensional M1 should not
be confused with the (1-dimensional) moduli space of elliptic curvesM1,1, which consists
of a smooth genus 1 curve and a marked point regarded as the identity for the group law.
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variety (that’s already not our case unless d = 1, 2). Then infinitesimal de-
formations of C are given by global sections of the normal bundle νC and
thus lie in H0(C, νC), while obstructions to deformations lie in H1(C, νC).2
This means that a deformation s ∈ H0(C, νC) will be admissible if some
class ob(s) ∈ H1(C, νC) vanishes. Given that these are vector spaces, the
expected3 dimension of admissible deformations of C is the difference in rank
h0(C, νC)− h1(C, νC).

(1) Using a certain well-known short exact sequence, calculate h0(C, νC)−
h1(C, νC) to be∫

C
c1(X) + (dimX − 3)(1− g).

(2) The dimension of the moduli space of complex structures on C is
3g − 3 by Exercise 1. Identify this term in the above formula.

(3) Read the additional explanations of section 1
2 and the beginning of

section 11
2 of [11].

Finally, we get to some calculations.

Exercise 3. Prove rigorously that N1 = 1.

Exercise 4. We consider d = 2. The following is the outline of proof that
N2 = 1.

(1) The space of conics in P2 is parametrized by P5. More precisely,
[a : b : c : d : e : f ] ∈ P5 corresponds to the conic given by

ax2 + by2 + cz2 + dxy + exz + fyz = 0.

(2) Imposing that the conic [a : b : c : d : e : f ] meets P = [p : q : r]
translates into

ap2 + bq2 + cr2 + dpq + epr + fqr = 0,

hence a linear equation on P5.
(3) We have 3× 2− 1 = 5 general points in P2. By a linear coordinate

change of P2, we may assume them to be P1 = [1 : 0 : 0], P2 = [0 :
1 : 0], P3 = [0 : 0 : 1], P4 = [1 : 1 : 1] and P5 = [p : q : r].

(4) Solving the equations gives a unique solution, hence N2 = 1.

Does this method extend to d ≥ 3? Why not? The natural generalization
of this method is counting what types of curves of degree d passing through
how many general points? What’s the number of such curves?

2In deformation theory, deformations typically are given by some H0 and obstructions
by some H1.

3Expected here translates into the map ob being non-degenerate. More about this in a
lecture or another exercise session.
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Exercise 5. The problem of calculating all Nd was solved recursively by
Kontsevich in the early 90s using his moduli space of stable maps. Read
the introduction to that solution in [5, Section 0]. Answer the following
questions:

• What does the open part of the moduli space consist of?
• In order to use intersection theory to define invariants, one needs
compact moduli spaces. Why is that?
• If one takes limits of (embedded) curves in P2, ’bad’ singularities may
occur like cusps. Exercise 8 below illustrates how this is undesirable
for curve counts. Explain how the moduli space of stable maps
circumvents that problem.

Exercise 6. We are now interested in counting the number of conics that are
tangent to 5 general lines. A conic will meet a line in two points. Requiring
these two points to come together (shrinking their distance if you will) is
a codimension 1 condition in P5. Doing this 5 times hence yields a zero-
dimensional counting problem. Find out the issue in the following argument:

(1) As before the space of conics in P2 consists of [a : b : c : d : e : f ] ∈ P5

corresponding to
ax2 + by2 + cz2 + dxy + exz + fyz = 0.

(2) Consider a line L. By a linear coordinate change, we may assume
that L is given by y = 0. Hence the intersection points of [a : b : c :
d : e : f ] and L are given by

ax2 + cz2 + exz = 0.
This equation has a double root if and only if its discriminant e2 −
4ac = 0.

(3) We conclude that meeting a general line in a point of maximal tan-
gency imposes a degree 2 condition. Hence the solution to our enu-
merative problem is the intersection of 5 general degree 2 hypersur-
faces in P5 yielding the invariant 25 = 32.

(4) However, the correct answer is 1, we are off by 31! Where is the flaw
in the argument?

(5) Why did this problem not occur in Exercise 4?
(6) Advanced: Use excess intersection theory to correct the above curve

count. Hint: This problem is treated in [4] and [8].

Exercise 7. The invariant N3 can be calculated explicitly using a beautiful
geometric trick. Consider the complete linear system L = |OP2(3)| of degree
3 effective divisors on P2.

(1) Show that L is of dimension 9.
(2) Show that requiring that elements of L pass through 8 general points

yields a pencil of cubics L′ whose members may be expressed as
ag1 + bg2 = 0
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for [a : b] ∈ P1 and smooth cubics g1 = 0, g2 = 0 passing through
the 8 general points.

(3) Provided that the 8 points are chosen generically, the curves in L′ are
at worst nodal. This follows for example from [9, Proposition 2.1],
though there may be some more direct ways of showing it, e.g. by
Kodaira’s, resp. Beauville’s, classification of elliptic surfaces, resp.
elliptic fibrations over P1.

(4) Show all f ∈ L′ meet another 9th point. Conclude that L′ has 9
basepoints.

(5) Construct the universal family S → P1 of L′. This is an elliptic
fibration.

(6) Calculate the Euler characteristic e(S) of S.
(7) Calculate the number of nodal fibers in terms of e(S).
(8) Conclude that N3 = 12.
(9) Why does this argument not generalize to d ≥ 4?

Exercise 8. This exercise is a variation of the previous one to the non-
general case and illustrates how the count of curves changes in non-generic
situations. Fix a smooth cubic E in P2. Let P0 be a flex point of E and
consider the elliptic curve (E,P0), i.e. we choose P0 as our zero element.
Locally, E can be given in some Weierstrass coordinates

E : y2 = x3 − ax− b,

where P0 is e.g. the point at infinity. Moreover, choose P to be a point of
order 9.

(1) Show that if C is a curve of degree 3 meeting E only at P (of
multiplicity 9), then C is irreducible and reduced.

(2) Let L be the linear system consisting of curves of degree 3 meeting E
only at P . Show that L is of dimension 1, hence a pencil. Intuitively,
requiring for a degree 3 curve C to meet E in only 1 point is a
codimension 8 condition. Indeed, each time two intersection points
come together, this cuts down the dimension by 1 and we do this 8
times. More rigorously, use the short exact sequence

0→ OP2 → OP2(3)→ OE(9P )→ 0,

obtained by noting that 3H|E ∼ 9P .
(3) Show that in L, there is exactly one curve D that is singular at P .
(4) Show that D is nodal at P .
(5) Construct the universal family S → P1 by 9 successive blow ups.

Keep track of the total transform of D.
(6) S → P1 is an elliptic fibration. Using the same argument as in

exercise 7, conclude that the number of rational nodal curves meeting
E only at P is 3.

(7) Repeat the previous argument to the case of a general E and curves
meeting E only at the flex point P0. This time, the divisor D is 3
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times the line at infinity. Because E was chosen to be general, we
may assume that the pencil contains at worst nodal curves. Conclude
that the number of rational nodal curves meeting E only at P is 2.

(8) It gets worse. Consider the (special) elliptic curve
E0 : f0 = y2z − x3 − z3 = 0, P0 = [0 : 1 : 0]

and the pencil
L′ : af0 + bz3 = 0.

Using a variation of the previous argument, show that the only ra-
tional curve in L′ is a cuspidal cubic.

(9) In conclusion, by specializing a general elliptic curve E to E0, the
count of degree 3 rational curves meeting E at a flex point goes from
2 nodal curves to 1 cuspidal curve. In the relevant moduli space, two
nodal curves converge to a cuspidal curve.

(10) This exercise is [12, Proposition 1.5].
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