
SYZ AND TROPICAL CURVE COUNTS

As a review of the last exercise set, recall Gross’ contribution [10, Slide 16]
to the definition of mirror symmetry:

Suggested reading

• A little bit of self-propaganda: [8], especially the introduction.
• Any of [9].
• Watch the talk http://media.kias.re.kr/detailPage.do?pro_

seq=741&type=p on the KIAS media archive given by P. Overholser
with title Toric degenerations, affine manifolds.
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Exercise 1. In the lecture, we saw a first approximation of the SYZ con-
jecture in the case where the base B is a vector space. This has a natural
extension to the case when B is an affine manifold. In the attached ex-
tract from [4] below, go through the construction of semi-flat SYZ mirror
symmetry and do the exercises.

Exercise 2. Sometimes special Lagrangian is relaxed to mean that im Ω|L =
eiθ volL, for constant θ. Prove that for elliptic curves (and in fact any curve),
special Lagrangians are ’straight’ lines. Explain what straight means.

Exercise 3. In the lecture, we described a simplified version of mirror sym-
metry for elliptic curves. Namely, our complex moduli was the positive
imaginary line instead of the entire upper half-plane. To generalize it to the
entire upper half plane, the issue is that the complex moduli is parametrized
by real 2 dimensions, whereas the Kähler parameter is real 1-dimensional.
The solution consists in introducing the complexified Kähler form. Use [5]
and [16] to extend the elliptic curve SYZ picture to the general case.

Exercise 4. Using [1] as a reference and starting from McLean’s theorem,
justify why every point of a Calabi-Yau X should be in one and only one
special Lagrangian torus.

Exercise 5. In [2, Remark 1.3], the authors argue that their version of
local mirror symmetry is complementary to Gross-Siebert. One difference
between the two is that [2] uses open Gromov-Witten invariants and the
mirror map. Why is that feature not needed in the Gross-Siebert program?
Which one is more geometric?

Exercise 6. The purpose of this exercise is to introduce tropical curve
counts ’by hand’. Recall that in the previous exercise session, we showed by
a geometric trick that the number of degree 3 rational curves N3 was 12. We
will reproduce this calculation tropically. Little to no previous knowledge of
tropical geometry is required. We closely follow section 4.2 of [8].

(1) Convince yourself that the number of degree −KP2 = 3H rational
curves in P2 passing through 8 general points is the same as the
number of degree −KS = 3H −E1−E2−E3 curves in S = Bl3pt P2

passing through 5 general points. Here the Ei are the classes of the
exceptional divisors.

(2) Fig. 2 of [8] gives the fan of the toric blowup Bl3pt P2 with rays gen-
erated by primitive vectors ρi. Consider the tropical curve depicted
in Fig. 3. If you zoom out enough, the curve looks like the fan of
Bl3pt P2 with one ray going in each of the directions ρi. This means
that the degree of the tropical curve is ∆ = ρ1 + · · ·+ρ6. Given that
we are counting curves in class −KS this is expected.

(3) The combinatorial type of our tropical curves correspond to a subdi-
vision of the Newton polytope of −KS . Find all possible subdivisions
and write down a tropical curve of that type.
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(4) When will a curve corresponding to a subdivision be reducible?
(5) How do we avoid obtaining reducible curves?
(6) When will a curve be rational?
(7) The starting curve is the tropical curve of Fig. 3. The 5 marked

points are distributed on it in general position.
(8) Moduli spaces of tropical curves have a particularly nice structure.

Deforming a curve corresponds to changing the length of its edges. In
our case, we have a pencil, hence our moduli space is 1-dimensional
and locally we are only changing the length of one edge at a time.
When a marked point becomes a vertex of the tropical curve, this
changes the combinatorial type of the tropical curve and the moduli
space branches off into two directions. The moduli space of degree
∆ tropical curves in our pencil is the graph of Fig. 4. The strategy
of proof is to follow the curves and record each time we encounter a
rational tropical curve, which are indicated by stars in Fig. 4.

(9) Follow along the moduli space by observing what happens to the
curves in Fig. 5 and 6.

(10) Understand why the last curve is counted with multiplicity 4.
(11) Read section 4.2.2.
(12) Do the exercises 4.13 at the end of section 4.2.
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us to identify MR with NR; in fact, δ̌ : MR → NR is easily seen to be this
identification. This identifies Γ ⊆MR with

Γ̌ = {dα(γ) ∈ NR|γ ∈ Γ}.
Exercise 6.11. Show that in Example 6.7, (2), there is no convex func-

tion K :MR → R with the property that K−K ◦Ψγ = α(γ) for some affine
linear α(γ), for all γ ∈ Γ. Thus B = MR/Γ cannot be a moduli space of
special Lagrangian tori on some Calabi-Yau manifold.

6.2. The semi-flat SYZ picture

We shall now use the structures on the base of a special Lagrangian
fibration detailed in the previous section to describe a simple form of mirror
symmetry. See [331] for more details on semi-flat mirror symmetry.

6.2.1. The basic version. We can now use the structures discussed
in §6.1 to define a toy version of mirror symmetry. Fix throughout this
section an affine manifold B, and assume that all transition maps are in
MR ⋊GL(n,Z) (rather than Aff(MR)).

Given this data, let y1, . . . , yn be local affine coordinates; then one ob-
tains a family of lattices in TB, generated by ∂/∂y1, . . . , ∂/∂yn. This is
well-defined globally because of the integrality assumption: a change of co-
ordinates will produce a different basis for the same lattice, related by an
element of GL(n,Z). This defines a local system Λ ⊆ TB. Similarly, lo-
cally dy1, . . . , dyn generate a local system Λ̌ ⊆ T ∗B. We will also write
ΛR = Λ⊗Z R and Λ̌R = Λ̌⊗Z R. Again these are local systems contained in
TB and T ∗B, but now we allow real linear combinations of ∂/∂y1, . . . , ∂/∂yn
or dy1, . . . , dyn as local sections.

We can now define two torus bundles:

X(B) := TB/Λ

is a T n-bundle over B, as is

X̌(B) := T ∗B/Λ̌.

We write

f : X(B)→ B

and

f̌ : X̌(B)→ B,

and we say these are dual torus bundles.
These bundles X(B) and X̌(B) come along with some additional struc-

tures. First, X̌(B) is naturally a symplectic manifold: the canonical sym-
plectic form on T ∗B descends to a symplectic form ω on X̌(B). Sec-
ond, X(B) carries a complex structure. Locally, this can be described
in terms of holomorphic coordinates. Let U ⊆ B be an open set with
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affine coordinates y1, . . . , yn, so TU has coordinate functions y1, . . . , yn,
x1 = dy1, . . . , xn = dyn. Then

qj = e2π
√
−1(xj+

√
−1yj)

gives a system of holomorphic coordinates on TU/Λ.

Exercise 6.12. Check to see how the coordinates qj transform under
an integral affine change of coordinates yj. Observe that this change of
coordinates is holomorphic.

Completing this exercise shows that these coordinates give a well-defined
complex structure on X(B). Note that this can be described in a coordinate-

free manner as follows. The differential of the developing map takes TB̃ =
B̃ ×MR to TMR = MR ×MR, which allows us to pull back the natural
complex structure on MR ×MR =MR ⊕

√
−1MR =MR ⊗ C. The complex

structure described by the above coordinates is just induced by the pullback
of the canonical complex structure on MR ⊗ C.

Note that in addition X(B) comes along with a natural local holomor-
phic n-form Ω given by

dq1 ∧ · · · ∧ dqn
q1 · · · qn

.

This is not always globally well-defined, although Ω ∧ Ω̄ is, as we see in the
following exercise.

Exercise 6.13. Check that Ω is preserved by a change of coordinates
y1, . . . , yn in MR ⋊ SLn(Z), and is only preserved up to sign by a change
of coordinates in MR ⋊ GL(n,Z). Thus, if the holonomy representation is
contained in MR ⋊ SLn(Z), we obtain a global holomorphic n-form Ω.

Now suppose in addition we have a metric g of Hessian form on B, with
potential function K : B̃ → R. Then in fact both X(B) and X̌(B) become
Kähler manifolds:

Proposition 6.14. K ◦f is a (multi-valued) Kähler potential on X(B),
defining a Kähler form ω = 2

√
−1∂∂̄(K ◦f). This metric is Ricci-flat if and

only if K satisfies the real Monge-Ampère equation

det
∂2K

∂yi∂yj
= constant.

Proof. Working locally with affine coordinates (yi) and multi-valued
complex coordinates zi = 1

2π
√−1 log qi = xi +

√
−1yi, we compute ω =

2
√
−1∂∂̄(K ◦ f) =

√−1
2

∑ ∂2K
∂yi∂yj

dzi ∧ dz̄j which is clearly positive. Fur-

thermore, ωn is proportional to Ω ∧ Ω̄ if and only if det(∂2K/∂yi∂yj) is
constant. �

We write this Kähler manifold as X(B,K).
Dually we have
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Proposition 6.15. In local canonical coordinates yi, x̌i on T ∗B, the
functions zi = x̌i +

√
−1∂K/∂yi on T ∗B induce a well-defined complex

structure on X̌(B), with respect to which the canonical sympletic form ω
is the Kähler form of a metric. Furthermore this metric is Ricci-flat if and
only if K satisfies the real Monge-Ampère equation

det
∂2K

∂yi∂yj
= constant.

Proof. As in Exercise 6.12, it is easy to see that an affine linear change
in the coordinates yi (and hence an appropriate change in the coordinates
x̌i) results in a linear change of the coordinates zi, so they induce a well-
defined complex structure invariant under x̌i 7→ x̌i+1, and hence a complex
structure on X̌(B). So one computes that

ω =
∑

dx̌i ∧ dyi =
√
−1
2

∑
gijdzi ∧ dz̄j

where gij = ∂2K/∂yi∂yj. Then the metric is Ricci-flat if and only if
det(gij) = constant, if and only if det(gij) = constant. �

As before, we call this Kähler manifold X̌(B,K), and now observe

Proposition 6.16. There is a canonical isomorphism

X(B,K) ∼= X̌(B̌, Ǩ)

of Kähler manifolds, where (B̌, Ǩ) is the Legendre transform of (B,K).

Proof. Of course B = B̌ as manifolds, but they carry different affine
structures. In addition, the metrics g induced by K and Ǩ coincide by
Proposition 6.4. Now identify TB and T ∗B = T ∗B̌ using this metric, so
in local coordinates (yi), ∂/∂yi is identified with

∑
j gijdyj. But dy̌i =

∑ ∂2K
∂yi∂yj

dyj =
∑

j gijdyj, so ∂/∂yi and dy̌i are identified. Thus this identi-

fication descends to a canonical identification of X(B) and X̌(B̌).
We just need to check that this identification gives an isomorphism of

Kähler manifolds. But the complex coordinate ži = x̌i +
√
−1∂Ǩ/∂y̌i on

T ∗B̌ is identified with the coordinate zi = xi +
√
−1yi on TB under this

identification, so the complex structures agree. Finally, the Kähler forms
are

√−1
2

∑
gijdzi ∧ dz̄j and

√−1
2

∑
ǧijdzi ∧ dz̄j
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respectively, where ǧij = g(∂/∂y̌i, ∂/∂y̌j). But

δik =
∑

j

gijg
jk =

∑

j

gjkg (∂/∂yi, ∂/∂yj)

=
∑

j

gjkg(
∑

k

gik∂/∂y̌k,
∑

l

gjl∂/∂y̌l)

=
∑

gjkgikgjlǧkl

=
∑

gilǧlk,

so ǧij = gij .
Thus the two Kähler forms also agree. �

We can now state more explicitly the simplest form of mirror symmetry.

Definition 6.17. If B is an affine manifold (with transition functions in
Rn ⋊GL(n,Z)) then we say X(B) and X̌(B) are SYZ dual. If, in addition,

we have a convex function K : B̃ → R, then we say

X(B,K) ∼= X̌(B̌, Ǩ)

and

X̌(B,K) ∼= X(B̌, Ǩ)

are SYZ dual.

In the former case, this is a duality between complex and symplectic
manifolds, and in the latter between Kähler manifolds. We view either case
as a simple version of mirror symmetry.

6.2.2. Semi-flat differential forms. In this section we will discuss
forms on both X(B) and X̌(B), and their interplay, so it will be useful
to work locally with affine coordinates y1, . . . , yn on B, and corresponding
coordinates x1, . . . , xn on the tangent bundle and x̌1, . . . , x̌n on the cotangent
bundle. In addition, we will assume in this section that the transition maps
of B are contained in Rn⋊SLn(Z), so that X(B) carries a nowhere vanishing
holomorphic n-form.

Definition 6.18. A semi-flat differential form of type (p, q) on X(B)
(or X̌(B)) is a (p+ q)-form written locally on B as

∑

#I=p
#J=q

αIJ(y)dyI ∧ dxJ

(or ∑

#I=p
#J=q

αIJ(y)dyI ∧ dx̌J
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